IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v121y2025icp100-110.html
   My bibliography  Save this article

Optimal investment and benefit strategies for a target benefit pension plan where the risky assets are jump diffusion processes

Author

Listed:
  • Josa-Fombellida, Ricardo
  • López-Casado, Paula

Abstract

In this paper, we study the optimal management of a target benefit pension plan. The fund manager adjusts the benefit to guarantee the plan stability. The fund can be invested in a riskless asset and several risky assets, where the uncertainty comes from Brownian and Poisson processes. The aim of the manager is to maximize the expected discounted utility of the benefit and the terminal fund wealth. A stochastic control problem is considered and solved by the programming dynamic approach. Optimal benefit and investment strategies are analytically found and analyzed, both in finite and infinite horizons. A numerical illustration shows the effect of some parameters on the optimal strategies and the fund wealth.

Suggested Citation

  • Josa-Fombellida, Ricardo & López-Casado, Paula, 2025. "Optimal investment and benefit strategies for a target benefit pension plan where the risky assets are jump diffusion processes," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 100-110.
  • Handle: RePEc:eee:insuma:v:121:y:2025:i:c:p:100-110
    DOI: 10.1016/j.insmatheco.2025.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668725000137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2025.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    3. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    4. Taylor, Greg, 2002. "Stochastic control of funding systems," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 323-350, June.
    5. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    6. Sennewald, Ken, 2007. "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1106-1131, April.
    7. Paolo Battocchio & Francesco Menoncin & Olivier Scaillet, 2007. "Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases," Annals of Operations Research, Springer, vol. 152(1), pages 141-165, July.
    8. Berkelaar, Arjan & Kouwenberg, Roy, 2003. "Retirement saving with contribution payments and labor income as a benchmark for investments," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1069-1097, April.
    9. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
    10. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.
    11. Wu, Liuren, 2003. "Jumps and Dynamic Asset Allocation," Review of Quantitative Finance and Accounting, Springer, vol. 20(3), pages 207-243, May.
    12. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2001. "Minimization of risks in pension funding by means of contributions and portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 35-45, August.
    13. He, Lin & Liang, Zongxia & Yuan, Fengyi, 2020. "Optimal DB-PAYGO pension management towards a habitual contribution rate," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 125-141.
    14. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    15. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    16. Steven Haberman & Alexandros Zimbidis, 2002. "An Investigation of the Pay-As-You-Go Financing Method Using a Contingency Fund and Optimal Control Techniques," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(2), pages 60-75.
    17. Haberman, Steven & Sung, Joo-Ho, 2005. "Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 103-116, February.
    18. Josa-Fombellida, Ricardo & López-Casado, Paula & Navas, Jorge, 2023. "A defined benefit pension plan model with stochastic salary and heterogeneous discounting," ASTIN Bulletin, Cambridge University Press, vol. 53(1), pages 62-83, January.
    19. Wang, Suxin & Lu, Yi, 2019. "Optimal investment strategies and risk-sharing arrangements for a hybrid pension plan," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 46-62.
    20. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
    21. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    22. Chang, Shih-Chieh, 1999. "Optimal pension funding through dynamic simulations: the case of Taiwan public employees retirement system," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 187-199, May.
    23. Kraft, Holger & Weiss, Farina, 2019. "Consumption-portfolio choice with preferences for cash," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 40-59.
    24. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, Enero-Abr.
    25. Wang, Suxin & Lu, Yi & Sanders, Barbara, 2018. "Optimal investment strategies and intergenerational risk sharing for target benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 1-14.
    26. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    27. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    28. Wenjing Guo & Chengming Xu, 2004. "Optimal portfolio selection when stock prices follow an jump-diffusion process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(3), pages 485-496, December.
    29. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    30. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    31. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    32. Bin Zou & Abel Cadenillas, 2017. "Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model," Risks, MDPI, vol. 5(1), pages 1-22, January.
    33. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    34. Ngwira, Bernard & Gerrard, Russell, 2007. "Stochastic pension fund control in the presence of Poisson jumps," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 283-292, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    2. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.
    3. Ayşegül İşcanog̃lu-Çekiç, 2016. "An Optimal Turkish Private Pension Plan with a Guarantee Feature," Risks, MDPI, vol. 4(3), pages 1-12, June.
    4. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    5. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    6. Zhao, Hui & Wang, Suxin, 2022. "Optimal investment and benefit adjustment problem for a target benefit pension plan with Cobb-Douglas utility and Epstein-Zin recursive utility," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1166-1180.
    7. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    8. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    9. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
    10. He, Lin & Liang, Zongxia & Wang, Sheng, 2022. "Dynamic optimal adjustment policies of hybrid pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 46-68.
    11. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    12. Guohui Guan & Jiaqi Hu & Zongxia Liang, 2021. "Robust equilibrium strategies in a defined benefit pension plan game," Papers 2103.09121, arXiv.org.
    13. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    14. He, Lin & Liang, Zongxia & Yuan, Fengyi, 2020. "Optimal DB-PAYGO pension management towards a habitual contribution rate," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 125-141.
    15. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    16. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    17. Wang, Suxin & Lu, Yi & Sanders, Barbara, 2018. "Optimal investment strategies and intergenerational risk sharing for target benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 1-14.
    18. He, Lin & Liang, Zongxia, 2013. "Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 404-410.
    19. Ngwira, Bernard & Gerrard, Russell, 2007. "Stochastic pension fund control in the presence of Poisson jumps," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 283-292, March.
    20. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:121:y:2025:i:c:p:100-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.