IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates

  • Josa-Fombellida, Ricardo
  • Rincón-Zapatero, Juan Pablo

In this paper we study the optimal management of an aggregated pension fund of defined benefit type, in the presence of a stochastic interest rate. We suppose that the sponsor can invest in a savings account, in a risky stock and in a bond with the aim of minimizing deviations of the unfunded actuarial liability from zero along a finite time horizon. We solve the problem by means of optimal stochastic control techniques and analyze the influence on the optimal solution of some of the parameters involved in the model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00074-5
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 201 (2010)
Issue (Month): 1 (February)
Pages: 211-221

as
in new window

Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:211-221
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2006. "Optimal investment decisions with a liability: The case of defined benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 81-98, August.
  2. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
  3. Chang, Shih-Chieh, 1999. "Optimal pension funding through dynamic simulations: the case of Taiwan public employees retirement system," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 187-199, May.
  4. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
  5. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
  6. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
  7. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
  8. Vigna, Elena & Haberman, Steven, 2001. "Optimal investment strategy for defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 233-262, April.
  9. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
  10. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
  11. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
  12. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
  13. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
  14. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
  15. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
  16. Constantinides, George M, 1978. "Market Risk Adjustment in Project Valuation," Journal of Finance, American Finance Association, vol. 33(2), pages 603-16, May.
  17. Menoncin, Francesco, 2005. "Cyclical risk exposure of pension funds: A theoretical framework," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 469-484, June.
  18. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:211-221. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.