IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes

  • Elena Vigna
Registered author(s):

    We consider the portfolio selection problem in the accumulation phase of a defined contribution pension scheme in continuous time, and compare the mean-variance and the expected utility maximization approaches. Using the embedding technique pioneered by Zhou and Li (2000) we first find the efficient frontier of portfolios in the Black-Scholes financial market. Then, using standard stochastic optimal control we find the optimal portfolios derived via expected utility for popular utility functions. As a main result, we prove that the optimal portfolios derived with the CARA and CRRA utility functions are not mean-variance efficient. As a corollary, we prove that this holds also in the standard portfolio selection problem. We provide a natural measure of inefficiency based on the difference between optimal portfolio variance and minimal variance, and we show its dependence on risk aversion, Sharpe ratio of the risky asset, time horizon, initial wealth and contribution rate. Numerical examples illustrate the extent of inefficiency of CARA and CRRA utility functions in defined contribution pension schemes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.carloalberto.org/assets/working-papers/no.108.pdf
    Download Restriction: no

    Paper provided by Collegio Carlo Alberto in its series Carlo Alberto Notebooks with number 108.

    as
    in new window

    Length: 35 pages
    Date of creation: 2009
    Date of revision: 2009
    Handle: RePEc:cca:wpaper:108
    Contact details of provider: Postal: Via Real Collegio, 30, 10024 Moncalieri (To)
    Phone: +390116705000
    Fax: +390116476847
    Web page: http://www.carloalberto.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Laura Schechter, 2007. "Risk aversion and expected-utility theory: A calibration exercise," Journal of Risk and Uncertainty, Springer, vol. 35(1), pages 67-76, August.
    2. Hakansson, Nils H., 1971. "Capital Growth and the Mean-Variance Approach to Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(01), pages 517-557, January.
    3. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    4. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    5. Luigi Guiso & Monica Paiella, 2007. "Risk Aversion, Wealth, and Background Risk," Economics Working Papers ECO2007/47, European University Institute.
    6. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    7. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    8. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2004. "Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans," LSE Research Online Documents on Economics 24831, London School of Economics and Political Science, LSE Library.
    9. Robert R. Grauer & Nils H. Hakansson, 1993. "On the Use of Mean-Variance and Quadratic Approximations in Implementing Dynamic Investment Strategies: A Comparison of Returns and Investment Policies," Management Science, INFORMS, vol. 39(7), pages 856-871, July.
    10. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-91, March.
    11. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    12. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi & Elena Vigna, 2010. "Constrained portfolio choices in the decumulation phase of a pension plan," Carlo Alberto Notebooks 155, Collegio Carlo Alberto.
    13. Xiao, Jianwu & Hong, Zhai & Qin, Chenglin, 2007. "The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 302-310, March.
    14. Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
    15. Isabelle Bajeux-Besnainou & Roland Portait, 1998. "Dynamic Asset Allocation in a Mean-Variance Framework," Management Science, INFORMS, vol. 44(11-Part-2), pages S79-S95, November.
    16. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    17. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, March.
    18. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    19. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    20. Robert Bordley & Marco LiCalzi, 2000. "Decision analysis using targets instead of utility functions," Decisions in Economics and Finance, Springer, vol. 23(1), pages 53-74.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:108. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanni Bert)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.