IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0906.0999.html
   My bibliography  Save this paper

The premium of dynamic trading

Author

Listed:
  • Chun Hung Chiu
  • Xun Yu Zhou

Abstract

It is well established that in a market with inclusion of a risk-free asset the single-period mean-variance efficient frontier is a straight line tangent to the risky region, a fact that is the very foundation of the classical CAPM. In this paper, it is shown that in a continuous-time market where the risky prices are described by Ito's processes and the investment opportunity set is deterministic (albeit time-varying), any efficient portfolio must involve allocation to the risk-free asset at any time. As a result, the dynamic mean-variance efficient frontier, though still a straight line, is strictly above the entire risky region. This in turn suggests a positive premium, in terms of the Sharpe ratio of the efficient frontier, arising from the dynamic trading. Another implication is that the inclusion of a risk-free asset boosts the Sharpe ratio of the efficient frontier, which again contrasts sharply with the single-period case.

Suggested Citation

  • Chun Hung Chiu & Xun Yu Zhou, 2009. "The premium of dynamic trading," Papers 0906.0999, arXiv.org.
  • Handle: RePEc:arx:papers:0906.0999
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0906.0999
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    2. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    4. Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    2. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Hung Chiu & Xun Yu Zhou, 2011. "The premium of dynamic trading," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 115-123.
    2. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    3. Shuzhen Yang, 2019. "Multi-time state mean-variance model in continuous time," Papers 1912.01793, arXiv.org.
    4. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    5. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    6. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    7. Bekker, Paul A., 2004. "A mean-variance frontier in discrete and continuous time," CCSO Working Papers 200406, University of Groningen, CCSO Centre for Economic Research.
    8. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    9. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    10. Malevergne, Y. & Sornette, D., 2007. "Self-consistent asset pricing models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 149-171.
    11. Cvitanic, Jaksa & Lazrak, Ali & Wang, Tan, 2008. "Implications of the Sharpe ratio as a performance measure in multi-period settings," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1622-1649, May.
    12. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    13. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    14. Sana Braiek & Rihab Bedoui & Lotfi Belkacem, 2022. "Islamic portfolio optimization under systemic risk: Vine Copula‐CoVaR based model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1321-1339, January.
    15. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    16. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 9, July-Dece.
    17. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
    18. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010.
    19. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    20. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0906.0999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.