IDEAS home Printed from
   My bibliography  Save this paper

Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters


  • Wan-Kai Pang
  • Yuan-Hua Ni
  • Xun Li
  • Ka-Fai Cedric Yiu


This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.

Suggested Citation

  • Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669,
  • Handle: RePEc:arx:papers:1302.6669

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    4. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    5. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous-Time Mean-Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.6669. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.