IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v80y2025ics1544612325006634.html
   My bibliography  Save this article

A data-driven prediction method for multi-period portfolio optimization using the real options approach

Author

Listed:
  • Arasteh, Abdollah

Abstract

Financial portfolio optimization balances risk and returns. Traditional multi-period models ignore financial time series dynamics and volatility by assuming normally distributed returns and static predictions. Many models ignore unequal estimation penalties, making them difficult. Different distribution models and uncertainty management in finance are sought to fill this gap. We test t-distributions and kernel estimators and add probabilistic risk criteria to the multi-period capital portfolio selection algorithm. Real options manage uncertainty in complex environments and provide accurate forecasts with strong decision-making tools despite volatile financial data. Modern theory applied to empirical applications improves dynamic financial system portfolio optimization and adaptive approaches.

Suggested Citation

  • Arasteh, Abdollah, 2025. "A data-driven prediction method for multi-period portfolio optimization using the real options approach," Finance Research Letters, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:finlet:v:80:y:2025:i:c:s1544612325006634
    DOI: 10.1016/j.frl.2025.107403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325006634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:80:y:2025:i:c:s1544612325006634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.