IDEAS home Printed from https://ideas.repec.org/p/ehu/dfaeii/8768.html
   My bibliography  Save this paper

Selectivity, pulse fishing and endogenous lifespan in Beverton-Holt models

Author

Listed:
  • Da Rocha, José María
  • Gutiérrez Huerta, María José
  • Antelo, Luis T.

Abstract

Optimal management in a multi-cohort Beverton-Holt model with any number of age classes and imperfect selectivity is equivalent to finding the optimal fish lifespan by chosen fallow cycles. Optimal policy differs in two main ways from the optimal lifespan rule with perfect selectivity. First, weight gain is valued in terms of the whole population structure. Second, the cost of waiting is the interest rate adjusted for the increase in the pulse length. This point is especially relevant for assessing the role of selectivity. Imperfect selectivity reduces the optimal lifespan and the optimal pulse length. We illustrate our theoretical findings with a numerical example. Results obtained using global numerical methods select the optimal pulse length predicted by the optimal lifespan rule.

Suggested Citation

  • Da Rocha, José María & Gutiérrez Huerta, María José & Antelo, Luis T., 2012. "Selectivity, pulse fishing and endogenous lifespan in Beverton-Holt models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
  • Handle: RePEc:ehu:dfaeii:8768
    as

    Download full text from publisher

    File URL: https://addi.ehu.es/handle/10810/8768
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grafton, R. Quentin & Kompas, Tom & Chu, Long & Che, Nhu, 2010. "Maximum economic yield," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 1-8.
    2. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    3. Stein Ivar Steinshamn, 2010. "A Conceptional Analysis of Dynamics and Production in Bioeconomic Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 799-808.
    4. Dawid, Herbert & Kopel, Michael, 1997. "On the Economically Optimal Exploitation of a Renewable Resource: The Case of a Convex Environment and a Convex Return Function," Journal of Economic Theory, Elsevier, vol. 76(2), pages 272-297, October.
    5. Anders Skonhoft & Niels Vestergaard & Martin Quaas, 2012. "Optimal Harvest in an Age Structured Model with Different Fishing Selectivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(4), pages 525-544, April.
    6. Trond Bjørndal & Daniel Gordon & Veijo Kaitala & Marko Lindroos, 2004. "International Management Strategies for a Straddling Fish Stock: A Bio-Economic Simulation Model of the Norwegian Spring-Spawning Herring Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(4), pages 435-457, December.
    7. Boyce, John R., 1996. "An Economic Analysis of the Fisheries Bycatch Problem," Journal of Environmental Economics and Management, Elsevier, vol. 31(3), pages 314-336, November.
    8. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    9. Florian Diekert & Dag Hjermann & Eric Nævdal & Nils Stenseth, 2010. "Spare the Young Fish: Optimal Harvesting Policies for North-East Arctic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 455-475, December.
    10. Michael Kopel & Herbert Dawid, 1999. "On optimal cycles in dynamic programming models with convex return function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(2), pages 309-327.
    11. Maroto, Jose M. & Moran, Manuel, 2008. "Increasing marginal returns and the danger of collapse of commercially valuable fish stocks," Ecological Economics, Elsevier, vol. 68(1-2), pages 422-428, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas A Oliver & Kirsten L L Oleson & Hajanaina Ratsimbazafy & Daniel Raberinary & Sophie Benbow & Alasdair Harris, 2015. "Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions ‘Catalyze’ Broader Management?," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-24, June.
    2. Colla-De-Robertis, Esteban & Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutiérrez, María-José & Prellezo, Raul, 2018. "A bayesian estimation of the economic effects of the Common Fisheries Policy on the Galician Fleet: a dynamic stochastic general equilibrium approach," MPRA Paper 89944, University Library of Munich, Germany.
    3. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    4. Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutierrez, Maria Jose & Touze, Julia, 2016. "A note on CES Preferences in Age-Structured Models," MPRA Paper 75298, University Library of Munich, Germany.
    5. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    6. Ni, Yuanming & Steinshamn, Stein I., 2016. "Optimal fishing mortalities with age-structured bioeconomic model - a case of NEA mackerel," Discussion Papers 2016/9, Norwegian School of Economics, Department of Business and Management Science.
    7. Villasante, Sebastian & Pierce, Graham J. & Pita, Cristina & Guimeráns, César Pazos & Garcia Rodrigues, João & Antelo, Manel & Da Rocha, José María & Cutrín, Javier García & Hastie, Lee C. & Veiga, Pe, 2016. "Fishers' perceptions about the EU discards policy and its economic impact on small-scale fisheries in Galicia (North West Spain)," Ecological Economics, Elsevier, vol. 130(C), pages 130-138.
    8. Alvin Slewion Jueseah & Dadi Mar Kristofersson & Tumi Tómasson & Ogmundur Knutsson, 2020. "A Bio-Economic Analysis of the Liberian Coastal Fisheries," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    9. Da Rocha, José María & Gutiérrez Huerta, María José & Villasante, Sebastián, 2013. "Economic Effects of Global Warming under Stock Growth Uncertainty: The European Sardine Fishery," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    10. José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
    11. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    2. Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
    3. José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
    4. Helgesen, Irmelin Slettemoen & Skonhoft, Anders & Eide, Arne, 2018. "Maximum Yield Fishing and Optimal Fleet Composition. A Stage Structured Model Analysis With an Example From the Norwegian North-East Arctic Cod Fishery," Ecological Economics, Elsevier, vol. 153(C), pages 204-217.
    5. Da Rocha, José María & Gutiérrez Huerta, María José & Cerviño, Santiago, 2012. "Reference Points Based on Dynamic Optimisation: A Versatil Algorithm for Mixed Fishery Management with Bio-economic Agestructured Models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    6. Melstrom, Richard T., 2015. "Cyclical harvesting in fisheries with bycatch," Resource and Energy Economics, Elsevier, vol. 42(C), pages 1-15.
    7. Katrin Erdlenbruch & Alain Jean-Marie & Michel Moreaux & Mabel Tidball, 2013. "Optimality of impulse harvesting policies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(2), pages 429-459, March.
    8. Maroto, Jose M. & Moran, Manuel, 2008. "Increasing marginal returns and the danger of collapse of commercially valuable fish stocks," Ecological Economics, Elsevier, vol. 68(1-2), pages 422-428, December.
    9. Da Rocha, José María & Gutiérrez Huerta, María José & Taboada Antelo, Luis, 2011. "Pulse vs. Optimal Stationary Fishing: The Northern Stock of Hake," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    10. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    11. Alain Jean-Marie & Mabel Tidball & Michel Moreaux & Katrin Erdlenbruch, 2009. "The Renewable Resource Management Nexus: Impulse versus Continuous Harvesting Policies," Working Papers 09-03, LAMETA, Universtiy of Montpellier, revised Mar 2009.
    12. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    13. Melstrom, Richard T., 2014. "Optimal Management of a Fishery with Bycatch," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168316, Agricultural and Applied Economics Association.
    14. Nævdal, Eric & Skonhoft, Anders, 2018. "New insights from the canonical fisheries model – Optimal management when stocks are low," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 125-133.
    15. José-María Da-Rocha & Linda Nøstbakken & Marcos Pérez, 2014. "Pulse Fishing and Stock Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 257-274, October.
    16. Martin F. Quaas & Till Requate, 2013. "Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multispecies Fishery Management," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(2), pages 381-422, April.
    17. Da Rocha, José María & Gutiérrez Huerta, María José, 2010. "Endogenous fisheries management in a stochastic model: Why do fishery agencies use TAC," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    18. Ni, Yuanming & Steinshamn, Stein I., 2016. "Optimal fishing mortalities with age-structured bioeconomic model - a case of NEA mackerel," Discussion Papers 2016/9, Norwegian School of Economics, Department of Business and Management Science.
    19. C. Mullon & J. Field & O. Thébaud & P. Cury & C. Chaboud, 2012. "Keeping the big fish: Economic and ecological tradeoffs in size-based fisheries management," Journal of Bioeconomics, Springer, vol. 14(3), pages 267-285, October.

    More about this item

    Keywords

    optimisation in age-structured models; pulse fishing;

    JEL classification:

    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehu:dfaeii:8768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alcira Macías Redondo (email available below). General contact details of provider: https://edirc.repec.org/data/f1ehues.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.