IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v58y2009i3p281-299.html
   My bibliography  Save this article

Economics of harvesting age-structured fish populations

Author

Listed:
  • Tahvonen, Olli

Abstract

A generic age-structured model is developed to derive analytical results on optimal harvesting. Given two age classes, knife-edge selectivity, and no stock-dependent harvesting cost, the steady state is a unique saddle point. Adding harvesting cost does not alter the uniqueness, given that the utility is linear. Under specific conditions such as nonselective gear, optimal harvesting is proved to be a stationary cycle that represents pulse fishing. Optimal steady states are different if age-structured information is ignored and optimization is based on traditional biomass variables. This implies that the existence of optimal sustainable harvesting depends on age-structured information. Given a specific set of conditions such as low interest rate and knife-edge selectivity, optimal harvesting converges toward a unique saddle point independently of the number of age classes.

Suggested Citation

  • Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
  • Handle: RePEc:eee:jeeman:v:58:y:2009:i:3:p:281-299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095-0696(09)00051-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Martin D. & Zhang, Junjie & Coleman, Felicia C., 2008. "Econometric modeling of fisheries with complex life histories: Avoiding biological management failures," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 265-280, May.
    2. Tapan Mitra & Henry Y. Wan, 1985. "Some Theoretical Results on the Economics of Forestry," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(2), pages 263-282.
    3. Mercenier, Jean & Michel, Philippe, 1994. "Discrete-Time Finite Horizon Appromixation of Infinite Horizon Optimization Problems with Steady-State Invariance," Econometrica, Econometric Society, vol. 62(3), pages 635-656, May.
    4. Gardner Brown, 2000. "Renewable Natural Resource Management and Use Without Markets," Working Papers 0025, University of Washington, Department of Economics.
    5. Stephen R. Palumbi, 2004. "Why mothers matter," Nature, Nature, vol. 430(7000), pages 621-622, August.
    6. Wilen, James E., 1985. "Bioeconomics of renewable resource use," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 1, chapter 2, pages 61-124, Elsevier.
    7. Nils Chr. Stenseth & Tristan Rouyer, 2008. "Destabilized fish stocks," Nature, Nature, vol. 452(7189), pages 825-826, April.
    8. Salo, Seppo & Tahvonen, Olli, 2002. "On Equilibrium Cycles and Normal Forests in Optimal Harvesting of Tree Vintages," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 1-22, July.
    9. Massey, D. Matthew & Newbold, Stephen C. & Gentner, Brad, 2006. "Valuing water quality changes using a bioeconomic model of a coastal recreational fishery," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 482-500, July.
    10. Clark, Colin W, 1973. "Profit Maximization and the Extinction of Animal Species," Journal of Political Economy, University of Chicago Press, vol. 81(4), pages 950-961, July-Aug..
    11. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    12. Olson, Lars J. & Roy, Santanu, 2000. "Dynamic Efficiency of Conservation of Renewable Resources under Uncertainty," Journal of Economic Theory, Elsevier, vol. 95(2), pages 186-214, December.
    13. Mitra, Tapan & Wan, Henry Jr., 1986. "On the faustmann solution to the forest management problem," Journal of Economic Theory, Elsevier, vol. 40(2), pages 229-249, December.
    14. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    15. Plourde, C G, 1970. "A Simple Model of Replenishable Natural Resource Exploitation," American Economic Review, American Economic Association, vol. 60(3), pages 518-522, June.
    16. Reed, William J., 1979. "Optimal escapement levels in stochastic and deterministic harvesting models," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 350-363, December.
    17. Deacon, Robert T., 1989. "An empirical model of fishery dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 16(2), pages 167-183, March.
    18. Townsend, Ralph E., 1986. "A critique of models of the American lobster fishery," Journal of Environmental Economics and Management, Elsevier, vol. 13(3), pages 277-291, September.
    19. Christian N. K. Anderson & Chih-hao Hsieh & Stuart A. Sandin & Roger Hewitt & Anne Hollowed & John Beddington & Robert M. May & George Sugihara, 2008. "Why fishing magnifies fluctuations in fish abundance," Nature, Nature, vol. 452(7189), pages 835-839, April.
    20. Ussif Sumaila, 1997. "Cooperative and Non-Cooperative Exploitation of the Arcto-Norwegian Cod Stock," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(2), pages 147-165, September.
    21. Salo, Seppo & Tahvonen, Olli, 2003. "On the economics of forest vintages," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1411-1435, June.
    22. Smith, Martin D. & Wilen, James E., 2003. "Economic impacts of marine reserves: the importance of spatial behavior," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 183-206, September.
    23. Wilen, James E., 2000. "Renewable Resource Economists and Policy: What Differences Have We Made?," Journal of Environmental Economics and Management, Elsevier, vol. 39(3), pages 306-327, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piazza, Adriana & Roy, Santanu, 2015. "Deforestation and optimal management," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 15-27.
    2. Florian Diekert & Dag Hjermann & Eric Nævdal & Nils Stenseth, 2010. "Spare the Young Fish: Optimal Harvesting Policies for North-East Arctic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 455-475, December.
    3. Florian Diekert, 2012. "Growth Overfishing: The Race to Fish Extends to the Dimension of Size," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 549-572, August.
    4. Diekert, Florian K. & Hjermann, Dag Ø. & Nævdal , Eric & Stenseth , Nils Chr., 2008. "Optimal Age- and Gear-specific Harvesting Policies for North-East Arctic Cod," Memorandum 16/2008, Oslo University, Department of Economics.
    5. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Meilby, Henrik & Brazee, Richard J., 12. "Sustainibility and Long-term Dynamics of Forests: Methods and Metrics for Detection of Convergence and Stationarity," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 40, May.
    7. Ali Khan, M. & Piazza, Adriana, 2012. "On the Mitra–Wan forestry model: A unified analysis," Journal of Economic Theory, Elsevier, vol. 147(1), pages 230-260.
    8. Dumollard, Gaspard, 2018. "Multiple-stand forest management under fire risk: Analytical characterization of stationary rotation ages and optimal carbon sequestration policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 146-154.
    9. Laukkanen, Matti & Tahvonen, Olli, 2023. "Wood product differentiation in age-structured forestry," Resource and Energy Economics, Elsevier, vol. 73(C).
    10. José Ramón Ruiz Tamarit & Manuel Sánchez Moreno, 2006. "Optimal Regulation And Growth In A Natural-Resource-Based Economy," Working Papers. Serie AD 2006-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    11. Khan, M. Ali & Piazza, Adriana, 2011. "Classical turnpike theory and the economics of forestry," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 194-210, August.
    12. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    13. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    14. Terry Heaps, 2014. "Convergence of Optimal Harvesting Policies to a Normal Forest," Discussion Papers dp14-01, Department of Economics, Simon Fraser University.
    15. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    16. Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
    17. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    18. Silvia Faggian & Giuseppe Freni, 2015. "A Ricardian Model of Forestry," Working Papers 2015:12, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
    19. Xabadia, Angels & Goetz, Renan U., 2010. "The optimal selective logging regime and the Faustmann formula," Journal of Forest Economics, Elsevier, vol. 16(1), pages 63-82, January.
    20. Smith, Martin D. & Zhang, Junjie & Coleman, Felicia C., 2008. "Econometric modeling of fisheries with complex life histories: Avoiding biological management failures," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 265-280, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:58:y:2009:i:3:p:281-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.