IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/102960.html
   My bibliography  Save this paper

Climate policy and power producers: the distribution of pain and gain

Author

Listed:
  • Doda, Baran
  • Fankhauser, Samuel

Abstract

Climate policies do not affect all power producers equally. In this paper, we evaluate the supply-side distributional consequences of emissions reduction policies using a simple and novel partial equilibrium model where production takes place in technology-specific sites. In a quantitative application hydro, wind and solar firms generate power combining capital and sites which differ in productivity. In contrast, the productivity levels of coal, gas and nuclear technologies are constant across sites. We parameterise the model to analyse the effects of stylised tax and subsidy schemes. Carbon pricing outperforms all other instruments and, crucially, leads to more equitable outcomes on the supply side. Technology-specific and uniform subsidies to carbon-free producers result in a greater welfare cost and their supply- side distributional impacts depend on how they are financed. Power consumption taxes have exceptionally high welfare costs and should not be the instrument of choice to reduce emissions or to finance subsidies aiming to reduce emissions.

Suggested Citation

  • Doda, Baran & Fankhauser, Samuel, 2020. "Climate policy and power producers: the distribution of pain and gain," LSE Research Online Documents on Economics 102960, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:102960
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/102960/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alex Bowen & Sam Fankhauser, 2017. "Good practice in low-carbon policy," Chapters, in: Alina Averchenkova & Sam Fankhauser & Michal Nachmany (ed.), Trends in Climate Change Legislation, chapter 7, pages 123-140, Edward Elgar Publishing.
    2. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    3. Mar Reguant, 2019. "The Efficiency and Sectoral Distributional Impacts of Large-Scale Renewable Energy Policies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 129-168.
    4. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    5. Lawrence H. Goulder & Marc A. C. Hafstead & Roberton C. Williams III, 2016. "General Equilibrium Impacts of a Federal Clean Energy Standard," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 186-218, May.
    6. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    7. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    8. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    9. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2014. "The incentive to invest in thermal plants in the presence of wind generation," Energy Economics, Elsevier, vol. 43(C), pages 306-315.
    10. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    11. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    12. Xaquin Garcia-Muros & Christoph Böhringer & Mikel Gonzalez-Eguino, 2017. "Cost-effectiveness and incidence of alternative mechanisms for financing renewables," Working Papers 2017-04, BC3.
    13. Tatyana Deryugina & Alexander MacKay & Julian Reif, 2020. "The Long-Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 86-114, January.
    14. Jan Abrell & Mirjam Kosch & Sebastian Rausch, 2017. "The Economic Cost of Carbon Abatement with Renewable Energy Policies," CER-ETH Economics working paper series 17/273, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    15. Bernstein, Ronald & Madlener, Reinhard, 2015. "Short- and long-run electricity demand elasticities at the subsectoral level: A cointegration analysis for German manufacturing industries," Energy Economics, Elsevier, vol. 48(C), pages 178-187.
    16. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    17. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    18. Matti Liski & Iivo Vehviläinen, 2016. "Gone with the Wind? An Empirical Analysis of the Renewable Energy Rent Transfer," CESifo Working Paper Series 6250, CESifo.
    19. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    20. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    21. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    22. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    23. Niall Farrell & Seán Lyons, 2016. "Equity impacts of energy and climate policy: who is shouldering the burden?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(5), pages 492-509, September.
    24. Samuel Fankhauser, 2013. "A practitioner's guide to a low-carbon economy: lessons from the UK," Climate Policy, Taylor & Francis Journals, vol. 13(3), pages 345-362, May.
    25. Yunfa Zhu & Madanmohan Ghosh & Deming Luo & Nick Macaluso & Jacob Rattray, 2018. "Revenue Recycling And Cost Effective Ghg Abatement: An Exploratory Analysis Using A Global Multi-Sector Multi-Region Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    26. Richard Schmalensee, 2012. "Evaluating Policies to Increase Electricity Generation from Renewable Energy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 45-64.
    27. Papaefthymiou, G. & Dragoon, Ken, 2016. "Towards 100% renewable energy systems: Uncapping power system flexibility," Energy Policy, Elsevier, vol. 92(C), pages 69-82.
    28. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    29. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    30. Dale W. Jorgenson & Richard J. Goettle & Mun S. Ho & Peter J. Wilcoxen, 2018. "The Welfare Consequences Of Taxing Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-39, February.
    31. Allen A. Fawcett & James R. Mcfarland & Adele C. Morris & John P. Weyant, 2018. "Introduction To The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-7, February.
    32. Eurek, Kelly & Sullivan, Patrick & Gleason, Michael & Hettinger, Dylan & Heimiller, Donna & Lopez, Anthony, 2017. "An improved global wind resource estimate for integrated assessment models," Energy Economics, Elsevier, vol. 64(C), pages 552-567.
    33. Christoph Böhringer, Florian Landis, and Miguel Angel Tovar Reaños, 2017. "Economic Impacts of Renewable Energy Production in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baran Doda, Sam Fankhauser, 2017. "Energy policy and the power sector in the long run," GRI Working Papers 276, Grantham Research Institute on Climate Change and the Environment.
    2. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    3. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    4. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    5. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    6. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57, July.
    7. Lawrence Haar, 2021. "Design Flaws in United Kingdom Renewable Energy Support Scheme," Energies, MDPI, vol. 14(6), pages 1-26, March.
    8. Jean-Pierre Amigues & Ujjayant Chakravorty & Gilles Lafforgue & Michel Moreaux, 2022. "Comparing Volume and Blend Renewable Energy Mandates under a Carbon Budget," Annals of Economics and Statistics, GENES, issue 147, pages 51-78.
    9. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    10. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    11. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    12. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    13. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Narita, Daiju & Requate, Till, 2021. "Price vs. quantity regulation of volatile energy supply and market entry of RES-E operators," Energy Economics, Elsevier, vol. 101(C).
    15. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    16. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    17. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    18. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    19. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    20. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.

    More about this item

    Keywords

    carbon pricing; renewable subsidies; supply-side distributional implications; climate policy; UKRI block grant;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:102960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.