IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3464.html

The Failure of Models That Predict Failure: Distance, Incentives, and Defaults

Author

Listed:
  • Seru, Amit

    (Stanford University)

  • Rajan, Uday
  • Vig, Vikrant

Abstract

Statistical default models, widely used to assess default risk, fail to account for a change in the relations between different variables resulting from an underlying change in agent behavior. We demonstrate this phenomenon using data on securitized subprime mortgages issued in the period 1997-2006. As the level of securitization increases, lenders have an incentive to originate loans that rate high based on characteristics that are reported to investors, even if other unreported variables imply a lower borrower quality. Consistent with this behavior, we find that over time lenders set interest rates only on the basis of variables that are reported to investors, ignoring other credit-relevant information. As a result, among borrowers with similar reported characteristics, over time the set that receives loans becomes worse along the unreported information dimension. This change in lender behavior alters the data generating process by transforming the mapping from observables to loan defaults. To illustrate this effect, we show that the interest rate on a loan becomes a worse predictor of default as securitization increases. Moreover, a statistical default model estimated in a low securitization period breaks down in a high securitization period in a systematic manner: it underpredicts defaults among borrowers for whom soft information is more valuable. Regulations that rely on such models to assess default risk could, therefore, be undermined by the actions of market participants.

Suggested Citation

  • Seru, Amit & Rajan, Uday & Vig, Vikrant, 2015. "The Failure of Models That Predict Failure: Distance, Incentives, and Defaults," Research Papers 3464, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3464
    as

    Download full text from publisher

    File URL: http://www.gsb.stanford.edu/faculty-research/working-papers/failure-models-predict-failure-distance-incentives-defaults
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.