IDEAS home Printed from
   My bibliography  Save this paper

Local Constant and Local Bilinear Multiple-Output Quantile Regression


  • Marc Hallin
  • Zudi Lu
  • Davy Paindaveine
  • Miroslav Siman


A new quantile regression concept, based on a directional version of Koenker and Bassett’s traditional single-output one, has been introduced in [Hallin, Paindaveine and ¡Siman, Annals of Statistics 2010, 635-703] for multiple-output regression problems. The polyhedral contours provided by the empirical counterpart of that concept, however, cannot adapt to nonlinear and/or heteroskedastic dependencies. This paper therefore introduces local constant and local linear versions of those contours, which both allow to asymptotically recover the conditional halfspace depth contours of the response. In the multiple-output context considered, the local linear construction actually is of a bilinear nature. Bahadur representation and asymptotic normality results are established. Illustrations are provided both on simulated and real data.

Suggested Citation

  • Marc Hallin & Zudi Lu & Davy Paindaveine & Miroslav Siman, 2012. "Local Constant and Local Bilinear Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2012-003, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/106956

    Download full text from publisher

    File URL:
    File Function: 2012-003-HALLIN_ZU_PAINDAVEINE_SIMAN-localconstant
    Download Restriction: no

    References listed on IDEAS

    1. Paindaveine, Davy & Siman, Miroslav, 2011. "On directional multiple-output quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
    2. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
    3. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    4. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1529-1564, October.
    5. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 459-470, September.
    6. Ioannides, D. A., 2004. "Fixed design regression quantiles for time series," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 235-245, July.
    7. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1180-1200, August.
    8. Yu, Keming & Jones, M. C., 1997. "A comparison of local constant and local linear regression quantile estimators," Computational Statistics & Data Analysis, Elsevier, vol. 25(2), pages 159-166, July.
    9. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
    10. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    11. Keming Yu & Zudi Lu, 2004. "Local Linear Additive Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 333-346.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.

    More about this item


    nonparametric regression; local bilineear regression; quantile regression; multivariate quantile; growth chart; halfspace depth;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/106956. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.