IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/14388.html
   My bibliography  Save this paper

Efficient Estimation of an Additive Quantile Regression Model

Author

Listed:
  • Cheng, Yebin
  • De Gooijer, Jan
  • Zerom, Dawit

Abstract

In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). With the aim to reduce variance of the first estimator, a second estimator is defined via sequential fitting of univariate local polynomial quantile smoothing for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.

Suggested Citation

  • Cheng, Yebin & De Gooijer, Jan & Zerom, Dawit, 2009. "Efficient Estimation of an Additive Quantile Regression Model," MPRA Paper 14388, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:14388
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/14388/1/MPRA_paper_14388.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    2. De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    4. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 459-470, September.
    5. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(01), pages 1-31, February.
    6. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Doksum, Kjell & Koo, Ja-Yong, 2000. "On spline estimators and prediction intervals in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 35(1), pages 67-82, November.
    9. Cai, Zongwu & Ould-Saïd, Elias, 2003. "Local M-estimator for nonparametric time series," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 433-449, December.
    10. Manzan, Sebastiano & Zerom, Dawit, 2005. "Kernel estimation of a partially linear additive model," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 313-322, May.
    11. Keming Yu & Zudi Lu, 2004. "Local Linear Additive Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 333-346.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Additive models; Asymptotic properties; Dependent data; Internalized kernel smoothing; Local polynomial; Oracle efficiency;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14388. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.