IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Kernel estimation of a partially linear additive model

  • Manzan, Sebastiano
  • Zerom, Dawit

In this paper, we introduce a kernel estimator for the finite-dimensional parameter of a partially linear additive model. Under some regularity conditions, we establish n1/2-consistency and asymptotic normality of the estimator. Unlike existing kernel-based estimators: Fan et al. (1998. Ann. Statist. 26, 943-971) and Fan and Li (2003. Statist. Sinica 13, 739-762) our estimator attains the semiparametric efficiency bound of the partially linear additive model under homoscedastic errors. We also show that when the true specification is the partially linear additive model, the proposed estimator is asymptotically more efficient than an estimator that ignores the additive structure.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V1D-4FNW1HN-2/2/c2d96ea488229b369a90d63499405a97
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 72 (2005)
Issue (Month): 4 (May)
Pages: 313-322

as
in new window

Handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:313-322
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-96, May.
  2. Li, Qi, 1996. "On the root-N-consistent semiparametric estimation of partially linear models," Economics Letters, Elsevier, vol. 51(3), pages 277-285, June.
  3. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
  4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:313-322. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.