IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v38y2011i1p46-62.html
   My bibliography  Save this article

Efficient Estimation of an Additive Quantile Regression Model

Author

Listed:
  • YEBIN CHENG
  • JAN G. DE GOOIJER
  • DAWIT ZEROM

Abstract

In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). With the aim to reduce variance of the first estimator, a second estimator is defined via sequential fitting of univariate local polynomial quantile smoothing for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
  • Handle: RePEc:bla:scjsta:v:38:y:2011:i:1:p:46-62
    DOI: j.1467-9469.2010.00706.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9469.2010.00706.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9469.2010.00706.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    2. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    3. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Doksum, Kjell & Koo, Ja-Yong, 2000. "On spline estimators and prediction intervals in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 35(1), pages 67-82, November.
    6. De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
    7. Cai, Zongwu & Ould-Saïd, Elias, 2003. "Local M-estimator for nonparametric time series," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 433-449, December.
    8. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    9. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 459-470, September.
    10. Manzan, Sebastiano & Zerom, Dawit, 2005. "Kernel estimation of a partially linear additive model," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 313-322, May.
    11. Keming Yu & Zudi Lu, 2004. "Local Linear Additive Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 333-346, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
    2. Noh, Hohsuk & Lee, Eun, 2012. "Component Selection in Additive Quantile Regression Models," LIDAM Discussion Papers ISBA 2012021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002112 is not listed on IDEAS
    2. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    3. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. repec:wyi:journl:002114 is not listed on IDEAS
    5. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.
    6. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    7. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    8. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    9. Tadao Hoshino, 2014. "Quantile regression estimation of partially linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 509-536, September.
    10. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    11. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.
    12. Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
    13. Holger Dette & Regine Scheder, 2011. "Estimation of additive quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 245-265, April.
    14. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    15. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    16. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    17. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    18. Simila, Timo, 2006. "Self-organizing map visualizing conditional quantile functions with multidimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2097-2110, April.
    19. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    20. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    21. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2009. "Efficient Estimation of an Additive Quantile Regression," Tinbergen Institute Discussion Papers 09-104/4, Tinbergen Institute.
    22. Lin, Wei & Cai, Zongwu & Li, Zheng & Su, Li, 2015. "Optimal smoothing in nonparametric conditional quantile derivative function estimation," Journal of Econometrics, Elsevier, vol. 188(2), pages 502-513.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:38:y:2011:i:1:p:46-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.