Semiparametric quantile averaging in the presence of high-dimensional predictors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2018.10.009
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
- Tomohiro Ando & Ker-Chau Li, 2014. "A Model-Averaging Approach for High-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 254-265, March.
- Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Shujie Ma & Runze Li & Chih-Ling Tsai, 2017. "Variable Screening via Quantile Partial Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 650-663, April.
- Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
- De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Yuanshan Wu & Guosheng Yin, 2015. "Conditional quantile screening in ultrahigh-dimensional heterogeneous data," Biometrika, Biometrika Trust, vol. 102(1), pages 65-76.
- Fenske, Nora & Kneib, Thomas & Hothorn, Torsten, 2011. "Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 494-510.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Horowitz, Joel L. & Lee, Sokbae, 2005.
"Nonparametric Estimation of an Additive Quantile Regression Model,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
- Sokbae Lee & Joel L. Horowitz, 2004. "Nonparametric Estimation of an Additive Quantile Regression Model," Econometric Society 2004 Far Eastern Meetings 721, Econometric Society.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers 07/04, Institute for Fiscal Studies.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers CWP07/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2018. "Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 919-932, April.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Gary M. Koop, 2013.
"Forecasting with Medium and Large Bayesian VARS,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
- Gary Koop, 2010. "Forecasting with Medium and Large Bayesian VARs," Working Paper series 43_10, Rimini Centre for Economic Analysis.
- Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
- Gary Koop, 2011. "Forecasting with Medium and Large Bayesian VARs," Working Papers 1117, University of Strathclyde Business School, Department of Economics.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011.
"Efficient Estimation of an Additive Quantile Regression Model,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
- Cheng, Yebin & De Gooijer, Jan & Zerom, Dawit, 2009. "Efficient Estimation of an Additive Quantile Regression Model," MPRA Paper 14388, University Library of Munich, Germany.
- Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016.
"Semiparametric dynamic portfolio choice with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Dynamic Portfolio Choice with Multiple Conditioning Variables," Discussion Papers 15/01, Department of Economics, University of York.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers 07/15, Institute for Fiscal Studies.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers CWP07/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Holger Dette & Regine Scheder, 2011. "Estimation of additive quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 245-265, April.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
- Manzan, Sebastiano & Zerom, Dawit, 2013.
"Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
- Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roger M. Cooke, 2023. "Averaging quantiles, variance shrinkage, and overconfidence," Futures & Foresight Science, John Wiley & Sons, vol. 5(1), March.
- Jan G. De Gooijer, 2023. "Penalized Averaging of Quantile Forecasts from GARCH Models with Many Exogenous Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 407-424, June.
- De Gooijer Jan G. & Zerom Dawit, 2020. "Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
- Barbara Rossi, 2021.
"Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them,"
Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015.
"Semiparametric model averaging of ultra-high dimensional time series,"
CeMMAP working papers
CWP62/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric model averaging of ultra-high dimensional time series," CeMMAP working papers 62/15, Institute for Fiscal Studies.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Model Averaging of Ultra-High Dimensional Time Series," Discussion Papers 15/18, Department of Economics, University of York.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Optimal Forecast Combination for Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202514, University of Kansas, Department of Economics, revised May 2025.
- Kong, Yinfei & Li, Yujie & Zerom, Dawit, 2019. "Screening and selection for quantile regression using an alternative measure of variable importance," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 435-455.
- Guo, Chaohui & Lv, Jing & Wu, Jibo, 2021. "Composite quantile regression for ultra-high dimensional semiparametric model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
- Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Shu, Lei & Hao, Yifan & Chen, Yu & Yang, Qing, 2025. "SFQRA: Scaled factor-augmented quantile regression with aggregation in conditional mean forecasting," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
- Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Tu, Yundong & Wang, Siwei, 2025. "Quantile prediction with factor-augmented regression: Structural instability and model uncertainty," Journal of Econometrics, Elsevier, vol. 249(PB).
- Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:3:p:891-909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i3p891-909.html