IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On directional multiple-output quantile regression

  • Davy Paindaveine
  • Miroslav Siman

This paper sheds some new light on the multivariate (projectional) quantiles recently introduced in Kong and Mizera (2008). Contrary to the sophisticated set analysis used there, we adopt a more parametric approach and study the subgradient conditions associated with these quantiles. In this setup, we introduce Lagrange multipliers which can be interpreted in various interesting ways. We also link these quantiles with portfolio optimization and present an alternative proof that the resulting quantile regions coincide with the halfspace depth ones. Our proof makes the link between halfspace depth contours and univariate quantiles of projections more explicit and results into an exact computation of sample quantile regions (hence also of halfspace depth regions) from projectional quantiles. Throughout, we systematically consider the regression case, which was barely touched in Kong and Mizera (2008). Above all, we study the projectional regression quantile regions and compare them with those resulting from the approach considered in Hallin, Paindaveine, and Siman (2009).To gain in generality and to make the comparison between both concepts easier, we present a general framework for directional multivariate(regression) quantiles which includes both approaches as particular cases and is of interest in itself.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/57550/1/RePEc_eca_wpaper_2009_011.pdf
File Function: RePEc_eca_wpaper_2009_011
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number 2009_011.

as
in new window

Length:
Date of creation: 2009
Date of revision:
Publication status: Published by: ECARES
Handle: RePEc:eca:wpaper:2009_011
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jules Sadefo Kamdem, 2005. "Value-At-Risk And Expected Shortfall For Linear Portfolios With Elliptically Distributed Risk Factors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(05), pages 537-551.
  2. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
  3. Marc Hallin & Davy Paindaveine & Miroslav Šiman, 2010. "Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth," ULB Institutional Repository 2013/127979, ULB -- Universite Libre de Bruxelles.
  4. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
  5. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232.
  6. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
  7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2009_011. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.