Localized conformal prediction: a generalized inference framework for conformal prediction
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Paindaveine, Davy & Siman, Miroslav, 2011.
"On directional multiple-output quantile regression,"
Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 193-212, February.
- Davy Paindaveine & Miroslav Siman, 2009. "On directional multiple-output quantile regression," Working Papers ECARES 2009_011, ULB -- Universite Libre de Bruxelles.
- Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
- Jing Lei & Larry Wasserman, 2014. "Distribution-free prediction bands for non-parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 71-96, January.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
- Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019.
"Distributional conformal prediction,"
Papers
1909.07889, arXiv.org, revised Aug 2021.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "Distributional conformal prediction," University of California at San Diego, Economics Working Paper Series qt2zs6m5p5, Department of Economics, UC San Diego.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paul, Joseph R. & Schaffer, Mark E., 2024. "An introduction to conformal inference for economists," Accountancy, Economics, and Finance Working Papers 2024-13, Heriot-Watt University, Department of Accountancy, Economics, and Finance.
- Mulubrhan G. Haile & Lingling Zhang & David J. Olive, 2024. "Predicting Random Walks and a Data-Splitting Prediction Region," Stats, MDPI, vol. 7(1), pages 1-11, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jingsen Kong & Yiming Liu & Guangren Yang & Wang Zhou, 2025. "Conformal prediction for robust deep nonparametric regression," Statistical Papers, Springer, vol. 66(1), pages 1-36, January.
- Ghosal, Rahul & Matabuena, Marcos & Ghosh, Sujit K., 2025. "Functional time transformation model with applications to digital health," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
- Áureo de Paula & Elie Tamer & Weiguang Liu, 2025.
"Prediction sets and conformal inference with censored outcomes,"
IFS Working Papers
WCWP04/25, Institute for Fiscal Studies.
- Áureo de Paula & Elie Tamer & Weiguang Liu, 2025. "Prediction sets and conformal inference with censored outcomes," CeMMAP working papers 04/25, Institute for Fiscal Studies.
- Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019.
"Distributional conformal prediction,"
Papers
1909.07889, arXiv.org, revised Aug 2021.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "Distributional conformal prediction," University of California at San Diego, Economics Working Paper Series qt2zs6m5p5, Department of Economics, UC San Diego.
- Weiguang Liu & 'Aureo de Paula & Elie Tamer, 2025. "Prediction Sets and Conformal Inference with Interval Outcomes," Papers 2501.10117, arXiv.org, revised Apr 2025.
- Paul, Joseph R. & Schaffer, Mark E., 2024. "An introduction to conformal inference for economists," Accountancy, Economics, and Finance Working Papers 2024-13, Heriot-Watt University, Department of Accountancy, Economics, and Finance.
- Zhang, Yingying & Shi, Chengchun & Luo, Shikai, 2023. "Conformal off-policy prediction," LSE Research Online Documents on Economics 118250, London School of Economics and Political Science, LSE Library.
- Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Meisenbacher, Stefan & Phipps, Kaleb & Taubert, Oskar & Weiel, Marie & Götz, Markus & Mikut, Ralf & Hagenmeyer, Veit, 2025. "AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability," Applied Energy, Elsevier, vol. 392(C).
- Chen, Qiang & Xiao, Zhijie & Yao, Qingsong, 2025. "Quantile control via random forest," Journal of Econometrics, Elsevier, vol. 249(PA).
- Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
- Michal Franta, 2025.
"The application of multiple-output quantile regression to the US financial cycle,"
Econometric Reviews, Taylor & Francis Journals, vol. 44(6), pages 696-714, July.
- Michal Franta, 2023. "The Application of Multiple-Output Quantile Regression on the US Financial Cycle," Working Papers 2023/2, Czech National Bank, Research and Statistics Department.
- Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Ke-Lin Du & Rengong Zhang & Bingchun Jiang & Jie Zeng & Jiabin Lu, 2025. "Foundations and Innovations in Data Fusion and Ensemble Learning for Effective Consensus," Mathematics, MDPI, vol. 13(4), pages 1-49, February.
- Paola Stolfi & Mauro Bernardi & Lea Petrella, 2016. "Multivariate Method Of Simulated Quantiles," Departmental Working Papers of Economics - University 'Roma Tre' 0212, Department of Economics - University Roma Tre.
- Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
- László Györfi & Tamás Linder & Harro Walk, 2025. "Distribution-free tests for lossless feature selection in classification and regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 262-287, March.
- Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:33-50.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.