IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1527.html
   My bibliography  Save this paper

About the Categorization of Latent Variables in Hybrid Choice Models

Author

Listed:
  • Francisco J. Bahamonde-Birke
  • Juan de Dios Ortúzar

Abstract

Although hybrid choice models are fairly popular nowadays, the way in which different types of latent variables are considered into the utility function has not been extensively analysed. Latent variables accounting for attitudes resemble socioeconomic characteristics and, therefore, systematic taste variations and categorizations of the latent variables should be considered. Nevertheless, categorizing a latent variable is not an easy subject, as these variables are not observed and consequently exhibit an intrinsic variability. Under these circumstances it is not possibly to assign an individual to a specific group, but only to establish a probability with which an individual should be categorized in given way. In this paper we explore different ways to categorize individuals based on latent characteristics, focusing on the categorization of latent variables. This approach exhibits as main advantage (over latent-classes for instance) a clear interpretation of the function utilized in the categorization process, as well as taking exogenous information into account. Unfortunately, technical issues (associated with the estimation technique via simulation) arise when attempting a direct categorization. We propose an alternative to attempt a direct categorization of latent variables (based on an auxiliary variable) and conduct a theoretical and empirical analysis (two case studies), contrasting this alternative with other approaches (latent variable-latent class approach and latent classes with perceptual indicators approach). Based on this analysis, we conclude that the direct categorization is the superior approach, as it offers a consistent treatment of the error term, in accordance with underlying theories, and a better goodness-of-fit.

Suggested Citation

  • Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "About the Categorization of Latent Variables in Hybrid Choice Models," Discussion Papers of DIW Berlin 1527, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1527
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.521105.de/dp1527.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold, 1970. "Estimation of Regression Relationships Containing Unobservable Independent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(3), pages 441-454, October.
    2. Francisco J. Bahamonde-Birke & Uwe Kunert & Heike Link & Juan de Dios Ortúzar, 2017. "About attitudes and perceptions: finding the proper way to consider latent variables in discrete choice models," Transportation, Springer, vol. 44(3), pages 475-493, May.
    3. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    4. Di Ciommo, Floridea & Monzón, Andrés & Fernandez-Heredia, Alvaro, 2013. "Improving the analysis of road pricing acceptability surveys by using hybrid models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 302-316.
    5. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    6. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    7. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    8. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    9. Sanko, Nobuhiro & Hess, Stephane & Dumont, Jeffrey & Daly, Andrew, 2014. "Contrasting imputation with a latent variable approach to dealing with missing income in choice models," Journal of choice modelling, Elsevier, vol. 12(C), pages 47-57.
    10. Francisco J. Bahamonde-Birke & Tibor Hanappi, 2015. "The Potential of Electromobility in Austria: An Analysis Based on Hybrid Choice Models," Discussion Papers of DIW Berlin 1472, DIW Berlin, German Institute for Economic Research.
    11. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    12. Train, Kenneth E & McFadden, Daniel L & Goett, Andrew A, 1987. "Consumer Attitudes and Voluntary Rate Schedules for Public Utilities," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 383-391, August.
    13. Link, Heike, 2015. "Is car drivers’ response to congestion charging schemes based on the correct perception of price signals?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 96-109.
    14. Andrew Daly & Stephane Hess & Bhanu Patruni & Dimitris Potoglou & Charlene Rohr, 2012. "Using ordered attitudinal indicators in a latent variable choice model: a study of the impact of security on rail travel behaviour," Transportation, Springer, vol. 39(2), pages 267-297, March.
    15. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    16. Yáñez, M.F. & Raveau, S. & Ortúzar, J. de D., 2010. "Inclusion of latent variables in Mixed Logit models: Modelling and forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 744-753, November.
    17. Maria Kamargianni & Moshe Ben-Akiva & Amalia Polydoropoulou, 2014. "Incorporating social interaction into hybrid choice models," Transportation, Springer, vol. 41(6), pages 1263-1285, November.
    18. Chorus, Caspar G. & Kroesen, Maarten, 2014. "On the (im-)possibility of deriving transport policy implications from hybrid choice models," Transport Policy, Elsevier, vol. 36(C), pages 217-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barrientos, Manuel & Lavin, Felipe Vasquez & Ponce Oliva, Roberto D., 2020. "Assessing the Incorporation of Latent Variables in the Estimation of the Value of a Statistical Life," EfD Discussion Paper 20-22, Environment for Development, University of Gothenburg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahamonde-Birke, Francisco J. & Ortúzar, Juan de Dios, 2017. "Analyzing the continuity of attitudinal and perceptual indicators in hybrid choice models," Journal of choice modelling, Elsevier, vol. 25(C), pages 28-39.
    2. Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "Analyzing the Continuity of Attitudinal and Perceptional Indicators in Hybrid Choice Models," Discussion Papers of DIW Berlin 1528, DIW Berlin, German Institute for Economic Research.
    3. Mikkel Thorhauge & Elisabetta Cherchi & Joan L. Walker & Jeppe Rich, 2019. "The role of intention as mediator between latent effects and behavior: application of a hybrid choice model to study departure time choices," Transportation, Springer, vol. 46(4), pages 1421-1445, August.
    4. Francisco J. Bahamonde-Birke, 2015. "Does Transport Behavior Influence Preferences for Elektromobility? An Analysis Based on Person- and Alternative-Specific Error Components," Discussion Papers of DIW Berlin 1529, DIW Berlin, German Institute for Economic Research.
    5. Rossetti, Tomás & Guevara, C. Angelo & Galilea, Patricia & Hurtubia, Ricardo, 2018. "Modeling safety as a perceptual latent variable to assess cycling infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 252-265.
    6. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    7. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour," Transportation, Springer, vol. 45(3), pages 789-825, May.
    8. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    9. Bahamonde-Birke, Francisco J. & Hanappi, Tibor, 2016. "The potential of electromobility in Austria: Evidence from hybrid choice models under the presence of unreported information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 30-41.
    10. Francisco J. Bahamonde-Birke & Uwe Kunert & Heike Link & Juan de Dios Ortúzar, 2017. "About attitudes and perceptions: finding the proper way to consider latent variables in discrete choice models," Transportation, Springer, vol. 44(3), pages 475-493, May.
    11. Antonio Borriello & John M. Rose, 2021. "Global versus localised attitudinal responses in discrete choice," Transportation, Springer, vol. 48(1), pages 131-165, February.
    12. Lahoz, Lorena Torres & Pereira, Francisco Camara & Sfeir, Georges & Arkoudi, Ioanna & Monteiro, Mayara Moraes & Azevedo, Carlos Lima, 2023. "Attitudes and Latent Class Choice Models using Machine Learning," Journal of choice modelling, Elsevier, vol. 49(C).
    13. Tomás Rossetti & Ricardo Daziano, 2023. "How does self-assessed health status relate to preferences for cycling infrastructure? A latent class and latent variable approach," Transportation, Springer, vol. 50(3), pages 913-928, June.
    14. Luis Márquez & Víctor Cantillo & Julián Arellana, 2020. "Assessing the influence of indicators’ complexity on hybrid discrete choice model estimates," Transportation, Springer, vol. 47(1), pages 373-396, February.
    15. Xuemei Fu, 2021. "How habit moderates the commute mode decision process: integration of the theory of planned behavior and latent class choice model," Transportation, Springer, vol. 48(5), pages 2681-2707, October.
    16. Wang, Tingting & Chen, Cynthia, 2012. "Attitudes, mode switching behavior, and the built environment: A longitudinal study in the Puget Sound Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1594-1607.
    17. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    18. Hess, Stephane & Spitz, Greg & Bradley, Mark & Coogan, Matt, 2018. "Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 547-567.
    19. Andy S. Choi & Kelly S. Fielding, 2016. "Cultural Attitudes as WTP Determinants: A Revised Cultural Worldview Scale," Sustainability, MDPI, vol. 8(6), pages 1-18, June.
    20. Glerum, Aurélie & Atasoy, Bilge & Bierlaire, Michel, 2014. "Using semi-open questions to integrate perceptions in choice models," Journal of choice modelling, Elsevier, vol. 10(C), pages 11-33.

    More about this item

    Keywords

    hybrid choice models; latent variables; latent classes; categorization;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.