IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2299.html
   My bibliography  Save this paper

Evaluating portfolio value-at-risk using semi-parametric GARCH models

Author

Listed:
  • ROMBOUTS, Jeroen VK
  • VERBEEK, Marno

Abstract

In this paper we examine the usefulness of multivariate semi-parametric GARCH models for portfolio selection under a Value-at-Risk (VaR) constraint. First, we specify and estimate several alternative multivariate GARCH models for daily returns on the S&P 500 and Nasdaq indexes. Examining the within sample VaRs of a set of given portfolios shows that the semi-parametric model performs uniformly well, while parametric models in several cases have unacceptable failure rates. Interestingly, distributional assumptions appear to have a much larger impact on the performance of the VaR estimates than the particular parametric specification chosen for the GARCH equations. Finally, we examine the economic value of the multivariate GARCH models by determining optimal portfolios based on maximizing expected returns subject to a VaR constraint, over a period of 500 consecutive days. Again, the superiority and robustness of the semi-parametric model is confirmed.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • ROMBOUTS, Jeroen VK & VERBEEK, Marno, 2009. "Evaluating portfolio value-at-risk using semi-parametric GARCH models," LIDAM Reprints CORE 2299, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2299
    DOI: 10.1080/14697680902785284
    Note: In : Quantitative Finance, 9(6), 737-745, 2009
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    2. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Peter de Goeij, 2004. "Modeling the Conditional Covariance Between Stock and Bond Returns: A Multivariate GARCH Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 531-564.
    5. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    6. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, vol. 23(2), pages 251-280, April.
    7. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    8. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    9. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    10. N. H. Bingham & Rudiger Kiesel & Rafael Schmidt, 2003. "A semi-parametric approach to risk management," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 426-441.
    11. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
    12. N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
    13. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    14. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    15. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    16. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Giovanni Barone Adesi & Patrick Gagliardini & Giovanni Urga, 2004. "Testing Asset Pricing Models With Coskewness," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 474-485, October.
    19. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    2. Francq, Christian & Zakoïan, Jean-Michel, 2020. "Virtual Historical Simulation for estimating the conditional VaR of large portfolios," Journal of Econometrics, Elsevier, vol. 217(2), pages 356-380.
    3. Kaijian He & Kin Keung Lai & Guocheng Xiang, 2012. "Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach," Energies, MDPI, vol. 5(4), pages 1-26, April.
    4. Pei Pei, 2010. "Backtesting Portfolio Value-at-Risk with Estimated Portfolio Weights," Caepr Working Papers 2010-010, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
    5. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
    6. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    7. BONGA-BONGA, Lumengo & NLEYA, Lebogang, 2018. "Assessing Portfolio Market Risk in the BRICS Economies: Use of Multivariate GARCH Models," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 71(2), pages 87-128.
    8. Moralles, Herick Fernando & do Nascimento Rebelatto, Daisy Aparecida, 2016. "The effects and time lags of R&D spillovers in Brazil," Technology in Society, Elsevier, vol. 47(C), pages 148-155.
    9. Kun Zhang & Laiwan Chan, 2009. "Efficient factor GARCH models and factor-DCC models," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 71-91.
    10. Cristi Spulbar & Ramona Birau & Iqbal Thonse Hawaldar & Jatin Trivedi & Anca Ioana Iacob (Troto), 2023. "Measuring Asymmetric Volatility Of Uk, France, And German Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 134-146, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauwens, Luc & Ben Omrane, Walid & Rengifo, Erick, 2010. "Intradaily dynamic portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2400-2418, November.
    2. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    3. Van Cauwenberge, Annelies & Vancauteren, Mark & Braekers, Roel & Vandemaele, Sigrid, 2019. "International trade, foreign direct investments, and firms’ systemic risk : Evidence from the Netherlands," Economic Modelling, Elsevier, vol. 81(C), pages 361-386.
    4. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    5. Jeroen Rombouts & E.W. Rengifo, 2004. "Dynamic Optimal Portfolio Selection in a VaR Framework," Cahiers de recherche 04-05, HEC Montréal, Institut d'économie appliquée.
    6. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    7. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    8. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    9. de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.
    10. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
    11. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    14. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    15. BAUWENS, Luc & BEN OMRANE, Walid & RENGIFO, Erick, 2006. "Intra-daily FX optimal portfolio allocation," LIDAM Discussion Papers CORE 2006010, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    17. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    18. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    19. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    20. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.