IDEAS home Printed from https://ideas.repec.org/p/cca/wplabo/118.html
   My bibliography  Save this paper

Indirect estimation of agent-based models.An application to a simple diffusion model

Author

Listed:
  • Jacob Grazzini
  • Matteo Richiardi
  • Lisa Sella

Abstract

Starting from an agent-based interpretation of the well-known Bass innovation diffusion model, we perform a Montecarlo analysis of the performance of a method of simulated moment estimator. We show that nonlinearities of the moments lead to a small bias in the estimates in small populations, and prove that our estimates are consistent and converge to the true values as population size increases. Our approach can be generalized to the estimation of more complex agent-based models. However, a trade-off emerges between model inadequacy and data inadequacy. This is particularly severe when only aggregate information is available, as common with diffusion data.

Suggested Citation

  • Jacob Grazzini & Matteo Richiardi & Lisa Sella, 2012. "Indirect estimation of agent-based models.An application to a simple diffusion model," LABORatorio R. Revelli Working Papers Series 118, LABORatorio R. Revelli, Centre for Employment Studies.
  • Handle: RePEc:cca:wplabo:118
    as

    Download full text from publisher

    File URL: http://www.laboratoriorevelli.it/_pdf/wp118.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
    2. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    3. David C. Schmittlein & Vijay Mahajan, 1982. "Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 1(1), pages 57-78.
    4. Boswijk, H. Peter & Franses, Philip Hans, 2005. "On the Econometrics of the Bass Diffusion Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 255-268, July.
    5. Leombruni, Roberto & Richiardi, Matteo, 2005. "Why are economists sceptical about agent-based simulations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 103-109.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Steven Stern, 1997. "Simulation-Based Estimation," Journal of Economic Literature, American Economic Association, vol. 35(4), pages 2006-2039, December.
    8. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    9. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    10. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    11. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    12. Grazzini Jakob, 2011. "Estimating Micromotives from Macrobehavior," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201111, University of Turin.
    13. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    14. Vijay Mahajan & Eitan Muller & Frank M. Bass, 1995. "Diffusion of New Products: Empirical Generalizations and Managerial Uses," Marketing Science, INFORMS, vol. 14(3_supplem), pages 79-88.
    15. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    16. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    17. Peter Winker and Manfred Gilli, 2001. "Indirect Estimation of the Parameters of Agent Based Models of Financial Markets," Computing in Economics and Finance 2001 59, Society for Computational Economics.
    18. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    19. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2006. "Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 38-42.
    20. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    21. Mariano,Roberto & Schuermann,Til & Weeks,Melvyn J. (ed.), 2000. "Simulation-based Inference in Econometrics," Cambridge Books, Cambridge University Press, number 9780521591126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    2. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Introduction - Improving the Toolbox: New Advances in Agent-Based and Computational Models," SciencePo Working papers Main hal-01053562, HAL.
    3. Sander Hoog, 2019. "Surrogate Modelling in (and of) Agent-Based Models: A Prospectus," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1245-1263, March.
    4. Jakob Grazzini & Matteo G. Richiardi, 2013. "Consistent Estimation of Agent-Based Models by Simulated Minimum Distance," LABORatorio R. Revelli Working Papers Series 130, LABORatorio R. Revelli, Centre for Employment Studies.
    5. Michael Neugart & Matteo G. Richiardi, 2012. "Agent-based models of the labor market," LABORatorio R. Revelli Working Papers Series 125, LABORatorio R. Revelli, Centre for Employment Studies.
    6. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Improving the toolbox. New advances in Agent-based and Computational Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 7-13.
    7. repec:hal:spmain:info:hdl:2441/dcditnq6282sbu1u151qe5p7f is not listed on IDEAS
    8. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    9. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    10. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564k4686 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    2. Jakob Grazzini & Matteo G. Richiardi, 2013. "Consistent Estimation of Agent-Based Models by Simulated Minimum Distance," LABORatorio R. Revelli Working Papers Series 130, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    4. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    5. Jakob Grazzini, 2011. "Consistent Estimation of Agent Based Models," LABORatorio R. Revelli Working Papers Series 110, LABORatorio R. Revelli, Centre for Employment Studies.
    6. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    7. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    8. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    9. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    10. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    11. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    13. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    14. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    15. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    16. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    17. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046.
    18. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    19. Nan Lu, 2018. "La modélisation de l’indice CAC 40 avec un modèle basé agent," Erudite Ph.D Dissertations, Erudite, number ph18-02 edited by François Legendre, December.
    20. repec:hal:spmain:info:hdl:2441/7kr9gv74ut9ngo58gia97t83i7 is not listed on IDEAS
    21. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    22. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.

    More about this item

    Keywords

    diffusion model; method of simulated moments; estimation;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wplabo:118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.