IDEAS home Printed from https://ideas.repec.org/p/zbw/fmpwps/37.html
   My bibliography  Save this paper

Estimation of sentiment effects in financial markets: A simulated method of moments approach

Author

Listed:
  • Zhenxi, Chen
  • Lux, Thomas

Abstract

We take the model of Alfarano et al. (Journal of Economic Dynamics & Control 32, 2008, 101-136) as a prototype agent-based model that allows reproducing the main stylized facts of financial returns. The model does so by combining fundamental news driven by Brownian motion with a minimalistic mechanism for generating boundedly rational sentiment dynamics. Since we can approximate the herding component among an ensemble of agents in the aggregate by a Langevin equation, we can either simulate the model in full at the micro level, or investigate the impact of sentiment formation in an aggregate asset pricing equation. In the simplest version of our model, only three parameters need to be estimated. We estimate this model using a simulated method of moments (SMM) approach. As it turns out, sensible parameter estimates can only be obtained if one first provides a rough "mapping" of the objective function via an extensive grid search. Due to the high correlations of the estimated parameters, uninformed choices will often lead to a convergence to any one of a large number of local minima. We also find that even for large data sets and simulated samples, the efficiency of SMM remains distinctly inferior to that of GMM based on the same set of moments. We believe that this feature is due to the limited range of moments available in univariate asset pricing models, and that the sensitivity of the present model to the specification of the SMM estimator could carry over to many related agent-based models of financial markets as well as to similar diffusion processes in mathematical finance.

Suggested Citation

  • Zhenxi, Chen & Lux, Thomas, 2015. "Estimation of sentiment effects in financial markets: A simulated method of moments approach," FinMaP-Working Papers 37, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  • Handle: RePEc:zbw:fmpwps:37
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/108992/1/821655280.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    2. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    3. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    4. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
    5. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time - Combining GMM and SMM to estimate long-run risk asset pricing models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100607, Verein für Socialpolitik / German Economic Association.
    6. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    7. Heisz, Andrew & Corak, Miles, 1998. "Mobilite intergenerationnelle des gains et du revenu des hommes au Canada : etude basee sur les donnees longitudinales de l'impot sur le revenu," Direction des études analytiques : documents de recherche 1998113f, Statistics Canada, Direction des études analytiques.
    8. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.
    9. repec:hal:spmain:info:hdl:2441/7kr9gv74ut9ngo58gia97t83i7 is not listed on IDEAS
    10. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    11. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner (ed.), 2009. "Handbook of Financial Markets: Dynamics and Evolution," Elsevier Monographs, Elsevier, edition 1, number 9780123742582.
    12. Ghonghadze, Jaba & Lux, Thomas, 2015. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," FinMaP-Working Papers 38, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Sylvain Barde, 2015. "Direct calibration and comparison of agent-based herding models of financial markets," Studies in Economics 1507, School of Economics, University of Kent.
    14. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    15. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    16. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time: Combining GMM and SMM to estimate long-run risk asset pricing models," CFS Working Paper Series 479, Center for Financial Studies (CFS).
    17. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    18. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    19. Carrasco, Marine & Florens, Jean-Pierre, 2002. "Simulation-Based Method of Moments and Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 482-492, October.
    20. Manfred Gilli & Enrico Schumann, 2009. "Optimal enough?," Working Papers 010, COMISEF.
    21. Tae-Seok Jang, 2015. "Identification of Social Interaction Effects in Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 207-238, February.
    22. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    23. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    24. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    25. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    26. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    27. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    28. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    29. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    30. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    31. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    32. Grammig, Joachim & Schaub, Eva-Maria, 2014. "Give me strong moments and time: Combining GMM and SMM to estimate long-run risk asset pricing," CFR Working Papers 14-05, University of Cologne, Centre for Financial Research (CFR).
    33. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    34. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    35. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    36. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    37. Manzan, Sebastiano & Westerhoff, Frank, 2005. "Representativeness of news and exchange rate dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 677-689, April.
    38. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    39. Jakob Grazzini, 2012. "Analysis of the Emergent Properties: Stationarity and Ergodicity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-7.
    40. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    41. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    2. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    3. Tae-Seok Jang, 2015. "Identification of Social Interaction Effects in Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 207-238, February.
    4. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    5. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    6. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    7. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    8. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    9. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    10. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    11. Zhenxi Chen & Jing Ru, 2021. "Herding and capitalization size in the Chinese stock market: a micro-foundation evidence," Empirical Economics, Springer, vol. 60(4), pages 1895-1911, April.
    12. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    13. repec:spo:wpmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    14. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    15. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    16. Raquel Almeida Ramos & Federico Bassi & Dany Lang, 2020. "Bet against the trend and cash in profits," CEPN Working Papers halshs-02956879, HAL.
    17. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    18. Ji, Jingru & Wang, Donghua & Xu, Dinghai, 2019. "Modelling the spreading process of extreme risks via a simple agent-based model: Evidence from the China stock market," Economic Modelling, Elsevier, vol. 80(C), pages 383-391.
    19. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    20. Grosche, Stephanie & Heckelei, Thomas, 2014. "Price dynamics and financialization effects in corn futures markets with heterogeneous traders," Discussion Papers 172077, University of Bonn, Institute for Food and Resource Economics.
    21. Noemi Schmitt & Frank Westerhoff, 2017. "Herding behaviour and volatility clustering in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1187-1203, August.
    22. Lux, Thomas, 2017. "Estimation of agent-based models using sequential Monte Carlo methods," Economics Working Papers 2017-07, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Keywords

    simulation-based estimation; herding; agent-based model; model validation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fmpwps:37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.