IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/260.html
   My bibliography  Save this paper

Is the Observed Persistence Spurious? A Test for Fractional Integration versus Short Memory and Structural Breaks

Author

Listed:
  • Laura Mayoral

Abstract

Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.

Suggested Citation

  • Laura Mayoral, 2006. "Is the Observed Persistence Spurious? A Test for Fractional Integration versus Short Memory and Structural Breaks," Working Papers 260, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:260
    as

    Download full text from publisher

    File URL: https://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/260.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    4. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    5. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    6. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II US Inflation Dynamics," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388, National Bureau of Economic Research, Inc.
    7. Walter Kramer & Philipp Sibbertsen, 2002. "Testing for Structural Changes in the Presence of Long Memory," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(3), pages 235-242, December.
    8. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    9. Marmol, Francesc & Velasco, Carlos, 2002. "Trend stationarity versus long-range dependence in time series analysis," Journal of Econometrics, Elsevier, vol. 108(1), pages 25-42, May.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    12. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    13. Diebold, Francis X. & Rudebusch, Glenn D., 1991. "On the power of Dickey-Fuller tests against fractional alternatives," Economics Letters, Elsevier, vol. 35(2), pages 155-160, February.
    14. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
    15. Gary Biglaiser & Ching-to Albert Ma, 2007. "Moonlighting: public service and private practice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1113-1133, December.
    16. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    17. Lazarova, Stepana, 2005. "Testing for structural change in regression with long memory processes," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 329-372.
    18. repec:cup:etheor:v:11:y:1995:i:4:p:736-49 is not listed on IDEAS
    19. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    20. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    21. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    22. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    23. Pivetta, Frederic & Reis, Ricardo, 2007. "The persistence of inflation in the United States," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1326-1358, April.
    24. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    25. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is what?: A simple time-domain test of long-memory vs. structural breaks," Economics Working Papers 954, Department of Economics and Business, Universitat Pompeu Fabra.
    26. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    27. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    28. Liu, Ming, 1998. "Asymptotics Of Nonstationary Fractional Integrated Series," Econometric Theory, Cambridge University Press, vol. 14(5), pages 641-662, October.
    29. Dufour, J-M. & King, M.L., 1989. "Optimal Invariant Tests For The Autocorrelation Coefficient In Linear Regressions With Stationary And Nonstationary Ar(1) Errors," Cahiers de recherche 8921, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    30. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
    31. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    32. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
    33. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    34. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    35. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    36. Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
    37. Baillie, R.T. & Chung, C.F. & Tieslau, M.A., 1992. "A Lond Memory and Variability of Inflation: A Reappraisal of The Friedman Hypothesis," Papers 9102, Michigan State - Econometrics and Economic Theory.
    38. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    39. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    40. Sibbertsen, Philipp & Venetis, Ioannis, 2003. "Distinguishing between long-range dependence and deterministic trends," Technical Reports 2003,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    41. Stepana Lazarova, 2004. "Testing for structural change in regression with long memory processes," Econometric Society 2004 North American Winter Meetings 501, Econometric Society.
    42. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2002. "A Fractional Dickey-Fuller Test for Unit Roots," Econometrica, Econometric Society, vol. 70(5), pages 1963-2006, September.
    43. Baillie, R. & Chung, C. & Tieslau, M., 1992. "The Long Memory and Variability of Inflation : A Reappraisal of the Friedman Hypothesis," Discussion Paper 1992-46, Tilburg University, Center for Economic Research.
    44. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2003. "Testing for a Unit Root Against Fractional Alternatives in the Presence of a Maintained Trend," Working Papers 29, Barcelona School of Economics.
    45. Bai, Jushan, 1999. "Likelihood ratio tests for multiple structural changes," Journal of Econometrics, Elsevier, vol. 91(2), pages 299-323, August.
    46. Vadim Teverovsky & Murad Taqqu, 1997. "Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(3), pages 279-304, May.
    47. Laura Mayoral & Juan J. Dolado & Jesús Gonzalo, 2003. "Long-range dependence in Spanish political opinion poll series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 137-155.
    48. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    49. Baillie, R. & Chung, C. & Tieslau, M., 1992. "The Long Memory and Variability of Inflation : A Reappraisal of the Friedman Hypothesis," Other publications TiSEM 49a709f4-608f-43c5-840b-c, Tilburg University, School of Economics and Management.
    50. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    51. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
    52. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 369-384.
    53. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    2. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2007. "Demand for Money: A Study in Testing Time Series for Long Memory and Nonlinearity," The Economic and Social Review, Economic and Social Studies, vol. 38(1), pages 1-24.
    3. Derek Bond & Michael J. Harrison & Niall Hession & Edward J. O'Brien, 2006. "Some Empirical Observations on the Forward Exchange Rate Anomaly," Trinity Economics Papers tep2006, Trinity College Dublin, Department of Economics.
    4. Agnieszka Leszczynska & Katarzyna Hertel, 2013. "Inflation persistence – a disaggregated approach," EcoMod2013 5692, EcoMod.
    5. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    6. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    7. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    2. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    3. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    4. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    5. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    6. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2012. "The Deaton paradox in a long memory context with structural breaks," Applied Economics, Taylor & Francis Journals, vol. 44(25), pages 3309-3322, September.
    9. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    10. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    11. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    12. Kyongwook Choi & Eric Zivot, 2003. "Long Memory and Structural Changes in the Forward Discount: An Empirical Investigation," EERI Research Paper Series EERI_RP_2003_02, Economics and Econometrics Research Institute (EERI), Brussels.
    13. Laura Mayoral, 2003. "Further Evidence on the Uncertain (Fractional) Unit Root in Real GNP," Working Papers 82, Barcelona School of Economics.
    14. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    15. Zeynel Abidin Ozdemir & Mehmet Balcilar & Aysit Tansel, 2013. "International Labour Force Participation Rates By Gender: Unit Root Or Structural Breaks?," Bulletin of Economic Research, Wiley Blackwell, vol. 65, pages 142-164, May.
    16. Cho, Cheol-Keun & Amsler, Christine & Schmidt, Peter, 2015. "A test of the null of integer integration against the alternative of fractional integration," Journal of Econometrics, Elsevier, vol. 187(1), pages 217-237.
    17. Fan, Yanqin & Gençay, Ramazan, 2010. "Unit Root Tests With Wavelets," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1305-1331, October.
    18. Joseph P. Byrne & Roger Perman, 2006. "Unit Roots and Structural Breaks: A Survey of the Literature," Working Papers 2006_10, Business School - Economics, University of Glasgow.
    19. Zeynel Abidin Ozdemir & Mehmet Balcilar & Aysit Tansel, 2013. "International Labour Force Participation Rates By Gender: Unit Root Or Structural Breaks?," Bulletin of Economic Research, Wiley Blackwell, vol. 65, pages 142-164, May.
    20. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/bargses.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.