IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Short-Run Assessment of French Economic Activity Using OPTIM

  • Irac, D.
  • Sédillot, F.

This paper describes a short-term projection model for French economic activity, OPTIM, the aim of which is twofold. First it gives an early estimate of real GDP growth for the previous quarter, when no figure has yet been released by Insee, the French National Statistical Institute, along with flash estimates for main GDP components (consumption, investment, inventories and external trade) together with a breakdown by sectors (services, manufacturing, construction, equipment, agri-food). This appears particularly useful for the short-run analysis. In this respect OPTIM may be considered as a traditional bridge equation model since it links a particular indicator available generally ahead of the release of the quarterly national accounts with a quarterly aggregate like GDP, consumption…. Second, this tool supplies also estimates for GDP growth and its main components for the current quarter and for the next quarter (i.e two and three quarters respectively following the latest reference period of Insee's GDP data release). A pool of (mainly) monthly variables is used, which are, sometimes, directly introduced in the specification but, more often, summarised by the implementation of a principal component analysis (PCA). The largest part of the set of indicators comprises survey data together with monthly traditional indicators (industrial production, consumption in manufactured goods…). But other data (in particular financial data) are also introduced. The outcomes of OPTIM rely on a relatively complex procedure involving about twenty equations and mixing two alternative approaches: a supply approach consisting in a direct modelling of GDP and a demand approach where GDP is the sum of consumption, investment, changes in stocks and net trade (exports minus imports). The discrepancy between these two estimates is distributed according to an original method, yielding a unique GDP estimation. The paper is organised as follows. Section 1 presents the main features of OPTIM. Section 2 deals with data description while section 3 addresses the data assessment's issue. In section 4, the main equations are described. Section 5 presents a general assessment of OPTIM in terms of forecasting record. Finally section 6 concludes and proposes some avenues for further developments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.banque-france.fr/uploads/tx_bdfdocumentstravail/ner88.pdf
Download Restriction: no

Paper provided by Banque de France in its series Working papers with number 88.

as
in new window

Length: 36 pages
Date of creation: 2002
Date of revision:
Handle: RePEc:bfr:banfra:88
Contact details of provider: Postal: Banque de France 31 Rue Croix des Petits Champs LABOLOG - 49-1404 75049 PARIS
Web page: http://www.banque-france.fr/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
  2. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2000. "The use and abuse of "real-time" data in economic forecasting," Working Papers 0004, Federal Reserve Bank of Dallas.
  3. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  4. Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
  5. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  6. Lucrezia Reichlin & Mario Forni & Marc Hallin & Marco Lippi, 2001. "Coincident and leading indicators for the Euro area," ULB Institutional Repository 2013/10137, ULB -- Universite Libre de Bruxelles.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:88. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael brassart)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.