IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/248.html
   My bibliography  Save this paper

Inference in Mixed Proportional Hazard Models with K Random Effects

Author

Listed:
  • Guillaume Horny.

Abstract

A general formulation of Mixed Proportional Hazard models with K random effects is provided. It enables to account for a population stratified at K different levels. We then show how to approximate the partial maximum likelihood estimator using an EM algorithm. In a Monte Carlo study, the behavior of the estimator is assessed and I provide an application to the ratification of ILO conventions. Compared to other procedures, the results indicate an important decrease in computing time, as well as improved convergence and stability.

Suggested Citation

  • Guillaume Horny., 2009. "Inference in Mixed Proportional Hazard Models with K Random Effects," Working papers 248, Banque de France.
  • Handle: RePEc:bfr:banfra:248
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_248_2009.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:adr:anecst:y:1990:i:17:p:07 is not listed on IDEAS
    2. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.
    3. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460 Elsevier.
    4. Hien T.V. Vu & Matthew W. Knuiman, 2002. "Estimation in Semiparametric Marginal Shared Gamma Frailty Models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 44(4), pages 489-501, December.
    5. Pakes, Ariel, 1983. "On Group Effects and Errors in Variables in Aggregation," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 168-173, February.
    6. Samuel Manda & Renate Meyer, 2005. "Age at first marriage in Malawi: a Bayesian multilevel analysis using a discrete time-to-event model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 439-455.
    7. Vu, Hien T. V., 2004. "Estimation in semiparametric conditional shared frailty models with events before study entry," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 621-637, April.
    8. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    9. Bernhard Boockmann, 2001. "The ratification of ILO conventions: A hazard rate analysis," Economics and Politics, Wiley Blackwell, vol. 13(3), pages 281-309, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Horny & Dragana Djurdjevic & Bernhard Boockmann & François Laisney, 2008. "Bayesian Estimation of Cox Models with Non-nested Random Effects: an Application to the Ratification Of ILO Conventions by Developing Countries," Annals of Economics and Statistics, GENES, issue 89, pages 193-214.

    More about this item

    Keywords

    EM algorithm; penalized likelihood; partial likelihood; frailties.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael brassart). General contact details of provider: http://edirc.repec.org/data/bdfgvfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.