IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/1227.html
   My bibliography  Save this paper

TailCoR

Author

Listed:
  • Lorenzo Ricci

    (ECARES)

  • David Veredas

    (ECARES)

Abstract

We introduce TailCoR, a new measure for tail correlation that is a function of linear and non-linear correlations, the latter characterized by the tail index. TailCoR can be exploited in a number of financial applications, such as portfolio selection where the investor faces risks of a linear and tail nature. Moreover, it has the following advantages: i) it is exact for any probability level as it is not based on tail asymptotic arguments (contrary to tail dependence coefficients), ii) it can be used in all tail scenarios (fatter, equal to or thinner than those of the Gaussian distribution), iii), it is distribution free, and iv) it is simple and no optimizations are needed. Monte Carlo simulations and calibrations reveal its goodness in finite samples. An empirical illustration using a panel of Euro area sovereign bonds shows that prior to 2009 linear correlations were in the vicinity of one and non-linear correlations were inexistent. Since the beginning of the crisis the linear correlations have decreased sharply, and non-linear correlations appeared and increased significantly in 2010-2011

Suggested Citation

  • Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
  • Handle: RePEc:bde:wpaper:1227
    as

    Download full text from publisher

    File URL: http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/12/Fich/dt1227e.pdf
    File Function: First version, July 2012
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.

    References listed on IDEAS

    as
    1. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    2. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Other publications TiSEM 6ee60ab8-3c01-4bd9-aa5e-7, Tilburg University, School of Economics and Management.
    3. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    4. Philipp Hartmann & Stefan Straetmans & Casper de Vries, 2007. "Banking System Stability. A Cross-Atlantic Perspective," NBER Chapters, in: The Risks of Financial Institutions, pages 133-188, National Bureau of Economic Research, Inc.
    5. Xiaohong Chen & David T. Jacho-Chávez & Oliver Linton, 2009. "An Alternative Way of ComputingEfficient Instrumental VariableEstimators," STICERD - Econometrics Paper Series 536, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
    7. John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
    8. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    9. Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
    10. Dominicy, Yves & Hörmann, Siegfried & Ogata, Hiroaki & Veredas, David, 2013. "On sample marginal quantiles for stationary processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 28-36.
    11. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," LIDAM Reprints ISBA 2018003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    13. Geraci, Marco Valerio & Garbaravičius, Tomas & Veredas, David, 2018. "Short selling in extreme events," Journal of Financial Stability, Elsevier, vol. 39(C), pages 90-103.
    14. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    15. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    16. Yves Dominicy & Pauliina Ilmonen & David Veredas, 2017. "Multivariate Hill Estimators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 108-142, April.
    17. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    18. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    19. Hashorva, Enkelejd, 2008. "Tail asymptotic results for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 158-164, August.
    20. Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Correlation structure of extreme stock returns," Papers cond-mat/0006034, arXiv.org, revised Jan 2001.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    23. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    24. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    25. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    26. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    27. Hua Chen & Tao Sun, 2020. "Tail Risk Networks of Insurers Around the Globe: An Empirical Examination of Systemic Risk for G‐SIIs vs Non‐G‐SIIs," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 285-318, June.
    28. P. Cizeau & M. Potters & J-P. Bouchaud, 2001. "Correlation structure of extreme stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 217-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    3. Constantin, Andreea & Peltonen, Tuomas A. & Sarlin, Peter, 2018. "Network linkages to predict bank distress," Journal of Financial Stability, Elsevier, vol. 35(C), pages 226-241.
    4. S. T. M. Straetmans & W. F. C. Verschoor & C. C. P. Wolff, 2008. "Extreme US stock market fluctuations in the wake of 9|11," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 17-42.
    5. Philipp Hartmann & Stefan Straetmans & Casper de Vries, 2007. "Banking System Stability. A Cross-Atlantic Perspective," NBER Chapters, in: The Risks of Financial Institutions, pages 133-188, National Bureau of Economic Research, Inc.
    6. Herrera, R. & Eichler, S., 2011. "Extreme dependence with asymmetric thresholds: Evidence for the European Monetary Union," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2916-2930, November.
    7. Elahi, M.A., 2011. "Essays on financial fragility," Other publications TiSEM 882f55bb-10dc-4e49-95ef-e, Tilburg University, School of Economics and Management.
    8. Bosma, Jakob & Koetter, Michael & Wedow, Michael, 2012. "Credit risk connectivity in the financial industry and stabilization effects of government bailouts," Discussion Papers 16/2012, Deutsche Bundesbank.
    9. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    10. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
    11. Christophe Boucher & Sessi Tokpavi, 2018. "Stocks and Bonds: Flight-to-Safety for Ever?," Working Papers hal-04141705, HAL.
    12. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    13. Michiel Bijlsma & Sander Muns, 2011. "Systemic risk across sectors; Are banks different?," CPB Discussion Paper 175.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    15. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    16. Sessi Tokpavi & Christophe Boucher, 2018. "Stocks and Bonds: Flight-to-Safety for Ever?," EconomiX Working Papers 2018-39, University of Paris Nanterre, EconomiX.
    17. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Shocks in financial markets, price expectation, and damped harmonic oscillators," Papers 1103.1992, arXiv.org, revised Sep 2011.
    18. Christophe Boucher & Sessi Tokpavi, 2019. "Stocks and Bonds: Flight-to-Safety for Ever?," Post-Print hal-02067096, HAL.
    19. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    20. Fabrizio Lillo & Rosario N. Mantegna & Jean-Philippe Bouchaud & Marc Potters, 2001. "Introducing Variety in Risk Management," Papers cond-mat/0107208, arXiv.org.

    More about this item

    Keywords

    Tail correlation; quantile; ellipticity; risk;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.