IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Pure Saddle Points and Symmetric Relative Payoff Games

  • Duersch, Peter
  • Oechssler, Jörg
  • Schipper, Burkhard C.

It is well known that the rock-paper-scissors game has no pure saddle point. We show that this holds more generally: A symmetric two-player zero-sum game has a pure saddle point if and only if it is not a generalized rock-paper-scissors game. Moreover, we show that every finite symmetric quasiconcave two-player zero-sum game has a pure saddle point. Further sufficient conditions for existence are provided. We apply our theory to a rich collection of examples by noting that the class of symmetric two-player zero-sum games coincides with the class of relative payoff games associated with symmetric two-player games. This allows us to derive results on the existence of a finite population evolutionary stable strategies.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Frontdoor page on HeiDOK
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by University of Heidelberg, Department of Economics in its series Working Papers with number 0500.

in new window

Date of creation: 30 Mar 2010
Date of revision:
Handle: RePEc:awi:wpaper:0500
Note: This paper is part of
Contact details of provider: Postal: Grabengasse 14, D-69117 Heidelberg
Phone: +49-6221-54 2905
Fax: +49-6221-54 2914
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John Duffy & Alexander Matros & Ted Temzelides, 2008. "Competitive Behavior in Market Games: Evidence and Theory," Working Papers 366, University of Pittsburgh, Department of Economics, revised Mar 2009.
  2. Ania, Ana B., 2008. "Evolutionary stability and Nash equilibrium in finite populations, with an application to price competition," Journal of Economic Behavior & Organization, Elsevier, vol. 65(3-4), pages 472-488, March.
  3. Walker, James M. & Gardner, Roy & Ostrom, Elinor, 1990. "Rent dissipation in a limited-access common-pool resource: Experimental evidence," Journal of Environmental Economics and Management, Elsevier, vol. 19(3), pages 203-211, November.
  4. Alex Possajennikov, 2003. "Evolutionary foundations of aggregate-taking behavior," Economic Theory, Springer, vol. 21(4), pages 921-928, 06.
  5. Schaffer, Mark E., 1989. "Are profit-maximisers the best survivors? : A Darwinian model of economic natural selection," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 29-45, August.
  6. Radzik, Tadeusz, 1991. "Saddle Point Theorems," International Journal of Game Theory, Springer, vol. 20(1), pages 23-32.
  7. Hehenkamp, Burkhard & Possajennikov, Alex & Guse, Tobias, 2010. "On the equivalence of Nash and evolutionary equilibrium in finite populations," Journal of Economic Behavior & Organization, Elsevier, vol. 73(2), pages 254-258, February.
  8. Van Huyck, John B & Battalio, Raymond C & Beil, Richard O, 1990. "Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure," American Economic Review, American Economic Association, vol. 80(1), pages 234-48, March.
  9. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2012. "Unbeatable imitation," Games and Economic Behavior, Elsevier, vol. 76(1), pages 88-96.
  10. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
  11. Wolfgang Leininger, 2006. "Fending off one means fending off all: evolutionary stability in quasi-submodular aggregative games," Economic Theory, Springer, vol. 29(3), pages 713-719, November.
  12. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
  13. Tanaka, Yasuhito, 2000. "A finite population ESS and a long run equilibrium in an n players coordination game," Mathematical Social Sciences, Elsevier, vol. 39(2), pages 195-206, March.
  14. Burkhard Hehenkamp & Wolfgang Leininger & Alex Possajennikov, 2003. "Evolutionary Equilibrium in Tullock Contests: Spite and Overdissipation," Discussion Papers in Economics 03_01, University of Dortmund, Department of Economics.
  15. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
  16. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-77, November.
  17. Carlos Alós-Ferrer & Ana Ania, 2005. "The evolutionary stability of perfectly competitive behavior," Economic Theory, Springer, vol. 26(3), pages 497-516, October.
  18. Branzei, Rodica & Mallozzi, Lina & Tijs, Stef, 2003. "Supermodular games and potential games," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 39-49, February.
  19. Brânzei, R. & Mallozzi, L. & Tijs, S.H., 2003. "Supermodular games and potential games," Other publications TiSEM 87c16860-0596-4448-808d-c, Tilburg University, School of Economics and Management.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:awi:wpaper:0500. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabi Rauscher)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.