IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v54y2025i1d10.1007_s00182-025-00938-2.html
   My bibliography  Save this article

Existence of pure equilibria in symmetric two-player zero-sum games

Author

Listed:
  • Mehmet S. Ismail

    (King’s College London)

  • Ronald Peeters

    (University of Otago)

Abstract

This paper contributes to the literature on pure equilibria in symmetric zero-sum games in two main ways. First, we introduce new sufficient conditions, including interchangeability and weak quasiconcavity, for the existence of such equilibria. Second, we uncover relationships between these newly introduced conditions and existing ones. For instance, we demonstrate that the class of weakly quasiconcave games generalizes the class of quasiconcave games and ordinal potential games. Additionally, we show that exact potential games satisfy the interchangeability condition. However, no logical relationship exists between interchangeability and (weak) quasiconcavity.

Suggested Citation

  • Mehmet S. Ismail & Ronald Peeters, 2025. "Existence of pure equilibria in symmetric two-player zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 54(1), pages 1-18, June.
  • Handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00938-2
    DOI: 10.1007/s00182-025-00938-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-025-00938-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-025-00938-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2012. "Unbeatable imitation," Games and Economic Behavior, Elsevier, vol. 76(1), pages 88-96.
    2. Schaffer, Mark E., 1989. "Are profit-maximisers the best survivors? : A Darwinian model of economic natural selection," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 29-45, August.
    3. Radzik, Tadeusz, 1991. "Saddle Point Theorems," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(1), pages 23-32.
    4. Hehenkamp, Burkhard & Possajennikov, Alex & Guse, Tobias, 2010. "On the equivalence of Nash and evolutionary equilibrium in finite populations," Journal of Economic Behavior & Organization, Elsevier, vol. 73(2), pages 254-258, February.
    5. Voorneveld, Mark, 2000. "Best-response potential games," Economics Letters, Elsevier, vol. 66(3), pages 289-295, March.
    6. Ania, Ana B., 2008. "Evolutionary stability and Nash equilibrium in finite populations, with an application to price competition," Journal of Economic Behavior & Organization, Elsevier, vol. 65(3-4), pages 472-488, March.
    7. Bahel, Eric & Haller, Hans, 2013. "Cycles with undistinguished actions and extended Rock–Paper–Scissors games," Economics Letters, Elsevier, vol. 120(3), pages 588-591.
    8. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2012. "Pure strategy equilibria in symmetric two-player zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 553-564, August.
    9. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    10. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    11. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet S. Ismail & Ronald Peeters, 2024. "A connection between von Neumann-Morgenstern expected utility and symmetric potential games," Theory and Decision, Springer, vol. 97(4), pages 707-720, December.
    2. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2010. "Pure Saddle Points and Symmetric Relative Payoff Games," Working Papers 0500, University of Heidelberg, Department of Economics.
    3. Duersch, Peter & Oechssler, Joerg & Schipper, Burkhard C, 2010. "Pure Saddle Points and Symmetric Relative Payoff Games," MPRA Paper 20864, University Library of Munich, Germany.
    4. Takuya Iimura & Toshimasa Maruta & Takahiro Watanabe, 2019. "Equilibria in games with weak payoff externalities," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 245-258, December.
    5. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2012. "Unbeatable imitation," Games and Economic Behavior, Elsevier, vol. 76(1), pages 88-96.
    6. Leininger, Wolfgang & Moghadam, Hamed M., 2014. "Evolutionary Stability in Asymmetric Oligopoly. A Non-Walrasian Result," Ruhr Economic Papers 497, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Takuya Iimura & Toshimasa Maruta & Takahiro Watanabe, 2020. "Two-person pairwise solvable games," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(2), pages 385-409, June.
    8. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2012. "Pure strategy equilibria in symmetric two-player zero-sum games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 553-564, August.
    9. Ismail, M.S., 2014. "A sufficient condition on the existence of pure equilibrium in two-person symmetric zerosum games," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    10. Burkhard C. Schipper, 2021. "The evolutionary stability of optimism, pessimism, and complete ignorance," Theory and Decision, Springer, vol. 90(3), pages 417-454, May.
    11. Schipper, Burkhard C, 2011. "Strategic control of myopic best reply in repeated games," MPRA Paper 30219, University Library of Munich, Germany.
    12. Konrad, Kai A. & Morath, Florian, 2016. "Bargaining with incomplete information: Evolutionary stability in finite populations," Journal of Mathematical Economics, Elsevier, vol. 65(C), pages 118-131.
    13. Wolfgang Leininger & Hamed Moghadam, 2014. "Evolutionary Stability in Asymmetric Oligopoly. A Non-Walrasian Result," Ruhr Economic Papers 0497, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    14. Burkhard Schipper & Peter Duersch & Joerg Oechssler, 2011. "Once Beaten, Never Again: Imitation in Two-Player Potential Games," Working Papers 26, University of California, Davis, Department of Economics.
    15. Gu, Yiquan & Hehenkamp, Burkhard & Leininger, Wolfgang, 2019. "Evolutionary equilibrium in contests with stochastic participation: Entry, effort and overdissipation," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 469-485.
    16. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2014. "When is tit-for-tat unbeatable?," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 25-36, February.
    17. Robert Philipowski, 2016. "Spiteful behavior can make everybody better off," Evolutionary and Institutional Economics Review, Springer, vol. 13(1), pages 113-116, June.
    18. Peter Duersch & Jörg Oechssler & Burkhard Schipper, 2014. "When is tit-for-tat unbeatable?," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 25-36, February.
    19. Duersch, Peter & Oechssler, Jörg & Schipper, Burkhard C., 2012. "Unbeatable imitation," Games and Economic Behavior, Elsevier, vol. 76(1), pages 88-96.
    20. Hamed Markazi Moghadam, 2020. "Price and non-price competition in an oligopoly: an analysis of relative payoff maximizers," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 507-521, April.

    More about this item

    Keywords

    Saddle points; Symmetric two-player zero-sum games; Pure strategy equilibrium; Potential games; Quasiconcave games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:54:y:2025:i:1:d:10.1007_s00182-025-00938-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.