IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.10165.html
   My bibliography  Save this paper

AI-assisted Programming May Decrease the Productivity of Experienced Developers by Increasing Maintenance Burden

Author

Listed:
  • Feiyang Xu
  • Poonacha K. Medappa
  • Murat M. Tunc
  • Martijn Vroegindeweij
  • Jan C. Fransoo

Abstract

Generative AI solutions like GitHub Copilot have been shown to increase the productivity of software developers. Yet prior work remains unclear on the quality of code produced and the challenges of maintaining it in software projects. If quality declines as volume grows, experienced developers face increased workloads reviewing and reworking code from less-experienced contributors. We analyze developer activity in Open Source Software (OSS) projects following the introduction of GitHub Copilot. We find that productivity indeed increases. However, the increase in productivity is primarily driven by less-experienced (peripheral) developers. We also find that code written after the adoption of AI requires more rework. Importantly, the added rework burden falls on the more experienced (core) developers, who review 6.5% more code after Copilot's introduction, but show a 19% drop in their original code productivity. More broadly, this finding raises caution that productivity gains of AI may mask the growing burden of maintenance on a shrinking pool of experts.

Suggested Citation

  • Feiyang Xu & Poonacha K. Medappa & Murat M. Tunc & Martijn Vroegindeweij & Jan C. Fransoo, 2025. "AI-assisted Programming May Decrease the Productivity of Experienced Developers by Increasing Maintenance Burden," Papers 2510.10165, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2510.10165
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.10165
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Nagle, 2019. "Open Source Software and Firm Productivity," Management Science, INFORMS, vol. 65(3), pages 1191-1215, March.
    2. Valentin Hofmann & Pratyusha Ria Kalluri & Dan Jurafsky & Sharese King, 2024. "AI generates covertly racist decisions about people based on their dialect," Nature, Nature, vol. 633(8028), pages 147-154, September.
    3. Rullani, Francesco & Haefliger, Stefan, 2013. "The periphery on stage: The intra-organizational dynamics in online communities of creation," Research Policy, Elsevier, vol. 42(4), pages 941-953.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2025. "Generative AI at Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 140(2), pages 889-942.
    6. Pankaj Setia & Balaji Rajagopalan & Vallabh Sambamurthy & Roger Calantone, 2012. "How Peripheral Developers Contribute to Open-Source Software Development," Information Systems Research, INFORMS, vol. 23(1), pages 144-163, March.
    7. Zenan Chen & Jason Chan, 2024. "Large Language Model in Creative Work: The Role of Collaboration Modality and User Expertise," Management Science, INFORMS, vol. 70(12), pages 9101-9117, December.
    8. Michelle Vaccaro & Abdullah Almaatouq & Thomas Malone, 2024. "When combinations of humans and AI are useful: A systematic review and meta-analysis," Nature Human Behaviour, Nature, vol. 8(12), pages 2293-2303, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    2. Kiran Tomlinson & Sonia Jaffe & Will Wang & Scott Counts & Siddharth Suri, 2025. "Working with AI: Measuring the Applicability of Generative AI to Occupations," Papers 2507.07935, arXiv.org, revised Oct 2025.
    3. Matthew O. Jackson & Qiaozhu Me & Stephanie W. Wang & Yutong Xie & Walter Yuan & Seth Benzell & Erik Brynjolfsson & Colin F. Camerer & James Evans & Brian Jabarian & Jon Kleinberg & Juanjuan Meng & Se, 2025. "AI Behavioral Science," Papers 2509.13323, arXiv.org.
    4. L. Elisa Celis & Lingxiao Huang & Nisheeth K. Vishnoi, 2025. "A Mathematical Framework for AI-Human Integration in Work," Papers 2505.23432, arXiv.org, revised May 2025.
    5. Jörg Papenkordt & Johannes Dahlke & Nicolas Neef & Sarah Zabel, 2025. "Exploring the impact of AI on team collaboration dynamics in creative decision-making," Working Papers Dissertations 146, Paderborn University, Faculty of Business Administration and Economics.
    6. Fasheng Xu & Xiaoyu Wang & Wei Chen & Karen Xie, 2025. "The Economics of AI Foundation Models: Openness, Competition, and Governance," Papers 2510.15200, arXiv.org.
    7. Lu Fang & Zhe Yuan & Kaifu Zhang & Dante Donati & Miklos Sarvary, 2025. "Generative AI and Firm Productivity: Field Experiments in Online Retail," Papers 2510.12049, arXiv.org, revised Oct 2025.
    8. Sabine Brunswicker & Sorin Adam Matei & Michael Zentner & Lynn Zentner & Gerhard Klimeck, 2017. "Creating impact in the digital space: digital practice dependency in communities of digital scientific innovations," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 417-442, January.
    9. Lu Fang & Zhe Yuan & Kaifu Zhang & Dante Donati & Miklos Sarvary, 2025. "Generative AI and Firm Productivity: Field Experiments in Online Retail," CESifo Working Paper Series 12201, CESifo.
    10. Gabriele Ruiu & Giovanna Gonano, 2020. "Religious Barriers to the Diffusion of Same-sex Civil Unions in Italy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 39(6), pages 1185-1203, December.
    11. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    12. Guido de Blasio & Daniela Vuri, 2019. "Effects of the Joint Custody Law in Italy," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(3), pages 479-514, September.
    13. Graves Jennifer & McMullen Steven & Rouse Kathryn, 2018. "Teacher Turnover, Composition and Qualifications in the Year-Round School Setting," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 18(3), pages 1-27, July.
    14. Alston Lee J. & Mueller Bernardo, 2018. "Priests, Conflicts and Property Rights: the Impacts on Tenancy and Land Use in Brazil," Man and the Economy, De Gruyter, vol. 5(1), pages 1-26, June.
    15. S Anukriti & Catalina Herrera‐Almanza & Praveen K. Pathak & Mahesh Karra, 2020. "Curse of the Mummy‐ji: The Influence of Mothers‐in‐Law on Women in India†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1328-1351, October.
    16. Ellison, Richard B. & Ellison, Adrian B. & Greaves, Stephen P. & Sampaio, Breno, 2017. "Electronic ticketing systems as a mechanism for travel behaviour change? Evidence from Sydney’s Opal card," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 80-93.
    17. Cruzatti C., John & Bjørnskov, Christian & Sáenz de Viteri, Andrea & Cruzatti, Christian, 2024. "Geography, development, and power: Parliament leaders and local clientelism," World Development, Elsevier, vol. 182(C).
    18. Yusuke Matsuki, 2016. "A Distribution-Free Test of Monotonicity with an Application to Auctions," Working Papers e110, Tokyo Center for Economic Research.
    19. Peppel-Srebrny, Jemima, 2021. "Not all government budget deficits are created equal: Evidence from advanced economies' sovereign bond markets," Journal of International Money and Finance, Elsevier, vol. 118(C).
    20. Eichengreen, Barry & Aksoy, Cevat Giray & Saka, Orkun, 2021. "Revenge of the experts: Will COVID-19 renew or diminish public trust in science?," Journal of Public Economics, Elsevier, vol. 193(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.10165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.