IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.08325.html
   My bibliography  Save this paper

Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms

Author

Listed:
  • Hangcheng Zhao
  • Ron Berman

Abstract

When online sellers use AI learning algorithms to automatically compete on e-commerce platforms, there is concern that they will learn to coordinate on higher than competitive prices. However, this concern was primarily raised in single-dimension price competition. We investigate whether this prediction holds when sellers make pricing and advertising decisions together, i.e., two-dimensional decisions. We analyze competition in multi-agent reinforcement learning, and use a large-scale dataset from Amazon.com to provide empirical evidence. We show that when consumers have high search costs, learning algorithms can coordinate on prices lower than competitive prices, facilitating a win-win-win for consumers, sellers, and platforms. This occurs because algorithms learn to coordinate on lower advertising bids, which lower advertising costs, leading to lower prices and enlarging demand on the platform. We also show that our results generalize to any learning algorithm that uses exploration of price and advertising bids. Consistent with our predictions, an empirical analysis shows that price levels exhibit a negative interaction between estimated consumer search costs and algorithm usage index. We analyze the platform's strategic response and find that reserve price adjustments will not increase platform profits, but commission adjustments will, while maintaining the beneficial outcomes for both sellers and consumers.

Suggested Citation

  • Hangcheng Zhao & Ron Berman, 2025. "Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms," Papers 2508.08325, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2508.08325
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.08325
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    2. Susan Athey & Glenn Ellison, 2011. "Position Auctions with Consumer Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1213-1270.
    3. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    4. Ron Berman & Zsolt Katona, 2020. "Curation Algorithms and Filter Bubbles in Social Networks," Marketing Science, INFORMS, vol. 39(2), pages 296-316, March.
    5. Xiao Liu, 2023. "Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping," Marketing Science, INFORMS, vol. 42(4), pages 637-658, July.
    6. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    7. Judith Chevalier & Austan Goolsbee, 2003. "Measuring Prices and Price Competition Online: Amazon.com and BarnesandNoble.com," Quantitative Marketing and Economics (QME), Springer, vol. 1(2), pages 203-222, June.
    8. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    9. Navdeep S Sahni & Harikesh S Nair, 2020. "Does Advertising Serve as a Signal? Evidence from a Field Experiment in Mobile Search," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(3), pages 1529-1564.
    10. Francesco Decarolis & Gabriele Rovigatti, 2021. "From Mad Men to Maths Men: Concentration and Buyer Power in Online Advertising," American Economic Review, American Economic Association, vol. 111(10), pages 3299-3327, October.
    11. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    12. Hanna Halaburda & Mikołaj Jan Piskorski & Pınar Yıldırım, 2018. "Competing by Restricting Choice: The Case of Matching Platforms," Management Science, INFORMS, vol. 64(8), pages 3574-3594, August.
    13. Ilya Morozov & Stephan Seiler & Xiaojing Dong & Liwen Hou, 2021. "Estimation of Preference Heterogeneity in Markets with Costly Search," Marketing Science, INFORMS, vol. 40(5), pages 871-899, September.
    14. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    15. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    16. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    17. Sherry He & Brett Hollenbeck & Davide Proserpio, 2022. "The Market for Fake Reviews," Marketing Science, INFORMS, vol. 41(5), pages 896-921, September.
    18. Yongmin Chen & Chuan He, 2011. "Paid Placement: Advertising and Search on the Internet," Economic Journal, Royal Economic Society, vol. 121(556), pages 309-328, November.
    19. Shunyuan Zhang & Nitin Mehta & Param Vir Singh & Kannan Srinivasan, 2021. "Frontiers: Can an Artificial Intelligence Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb," Marketing Science, INFORMS, vol. 40(5), pages 813-820, September.
    20. Joonhyuk Yang & Navdeep S. Sahni & Harikesh S. Nair & Xi Xiong, 2024. "Advertising as Information for Ranking E-Commerce Search Listings," Marketing Science, INFORMS, vol. 43(2), pages 360-377, March.
    21. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2024. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 723-771.
    22. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    23. Zemin (Zachary) Zhong, 2023. "Platform Search Design: The Roles of Precision and Price," Marketing Science, INFORMS, vol. 42(2), pages 293-313, March.
    24. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    25. Imke Reimers & Joel Waldfogel, 2023. "A Framework for Detection, Measurement, and Welfare Analysis of Platform Bias," NBER Working Papers 31766, National Bureau of Economic Research, Inc.
    26. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    27. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    28. Mark Armstrong & Jidong Zhou, 2011. "Paying for Prominence," Economic Journal, Royal Economic Society, vol. 121(556), pages 368-395, November.
    29. Kanishka Misra & Eric M. Schwartz & Jacob Abernethy, 2019. "Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments," Marketing Science, INFORMS, vol. 38(2), pages 226-252, March.
    30. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    31. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    32. Weijia Dai & Hyunjin Kim & Michael Luca, 2023. "Frontiers: Which Firms Gain from Digital Advertising? Evidence from a Field Experiment," Marketing Science, INFORMS, vol. 42(3), pages 429-439, May.
    33. Ron Berman & Zsolt Katona, 2013. "The Role of Search Engine Optimization in Search Marketing," Marketing Science, INFORMS, vol. 32(4), pages 644-651, July.
    34. Wen Wang & Beibei Li & Xueming Luo & Xiaoyi Wang, 2023. "Deep Reinforcement Learning for Sequential Targeting," Management Science, INFORMS, vol. 69(9), pages 5439-5460, September.
    35. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    36. Erev, Ido & Bereby-Meyer, Yoella & Roth, Alvin E., 1999. "The effect of adding a constant to all payoffs: experimental investigation, and implications for reinforcement learning models," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 111-128, May.
    37. Andrey Simonov & Chris Nosko & Justin M. Rao, 2018. "Competition and Crowd-Out for Brand Keywords in Sponsored Search," Marketing Science, INFORMS, vol. 37(2), pages 200-215, March.
    38. Andrew Sweeting, 2013. "Dynamic Product Positioning in Differentiated Product Markets: The Effect of Fees for Musical Performance Rights on the Commercial Radio Industry," Econometrica, Econometric Society, vol. 81(5), pages 1763-1803, September.
    39. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    40. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    41. Nicolás Aramayo & Mario Schiappacasse & Marcel Goic, 2023. "A Multiarmed Bandit Approach for House Ads Recommendations," Marketing Science, INFORMS, vol. 42(2), pages 271-292, March.
    42. Zsolt Katona & Miklos Sarvary, 2010. "The Race for Sponsored Links: Bidding Patterns for Search Advertising," Marketing Science, INFORMS, vol. 29(2), pages 199-215, 03-04.
    43. Fei Long & Kinshuk Jerath & Miklos Sarvary, 2022. "Designing an Online Retail Marketplace: Leveraging Information from Sponsored Advertising," Marketing Science, INFORMS, vol. 41(1), pages 115-138, January.
    44. Matthew Grennan, 2013. "Price Discrimination and Bargaining: Empirical Evidence from Medical Devices," American Economic Review, American Economic Association, vol. 103(1), pages 145-177, February.
    45. Hamsa Bastani & Pavithra Harsha & Georgia Perakis & Divya Singhvi, 2022. "Learning Personalized Product Recommendations with Customer Disengagement," Manufacturing & Service Operations Management, INFORMS, vol. 24(4), pages 2010-2028, July.
    46. Amin Sayedi & Kinshuk Jerath & Marjan Baghaie, 2018. "Exclusive Placement in Online Advertising," Marketing Science, INFORMS, vol. 37(6), pages 970-986, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Long & Kinshuk Jerath & Miklos Sarvary, 2022. "Designing an Online Retail Marketplace: Leveraging Information from Sponsored Advertising," Marketing Science, INFORMS, vol. 41(1), pages 115-138, January.
    2. Fei Long & Yunchuan Liu, 2024. "Platform Manipulation in Online Retail Marketplace with Sponsored Advertising," Marketing Science, INFORMS, vol. 43(2), pages 317-345, March.
    3. Fei Long & Wilfred Amaldoss, 2024. "Self-Preferencing in E-Commerce Marketplaces: The Role of Sponsored Advertising and Private Labels," Marketing Science, INFORMS, vol. 43(5), pages 925-952, September.
    4. Kaede Hanazawa, 2025. "Welfare Effects of Self-Preferencing by a Platform: Empirical Evidence from Airbnb," Papers 2503.04489, arXiv.org.
    5. Chen Jin & Luyi Yang & Kartik Hosanagar, 2023. "To Brush or Not to Brush: Product Rankings, Consumer Search, and Fake Orders," Information Systems Research, INFORMS, vol. 34(2), pages 532-552, June.
    6. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    7. Chen Jin & Luyi Yang & Kartik Hosanagar, 2019. "To Brush or Not to Brush: Product Rankings, Customer Search, and Fake Orders," Working Papers 19-02, NET Institute.
    8. Massimo Motta & Antonio Penta, 2022. "Market effects of sponsored search auctions," Economics Working Papers 1844, Department of Economics and Business, Universitat Pompeu Fabra.
    9. W. Jason Choi & Amin Sayedi, 2024. "Agency Market Power and Information Disclosure in Online Advertising," Marketing Science, INFORMS, vol. 43(6), pages 1279-1298, November.
    10. Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.
    11. Zexin Ye, 2025. "Algorithmic Collusion under Observed Demand Shocks," Papers 2502.15084, arXiv.org, revised Nov 2025.
    12. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    13. Giovanni Compiani & Gregory Lewis & Sida Peng & Peichun Wang, 2024. "Online Search and Optimal Product Rankings: An Empirical Framework," Marketing Science, INFORMS, vol. 43(3), pages 615-636, May.
    14. Hanspach, Philip & Sapi, Geza & Wieting, Marcel, 2024. "Algorithms in the marketplace: An empirical analysis of automated pricing in e-commerce," Information Economics and Policy, Elsevier, vol. 69(C).
    15. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    16. Harrington, Joseph E., 2024. "The effect of demand variability on the adoption and design of a third party’s pricing algorithm," Economics Letters, Elsevier, vol. 244(C).
    17. Raluca M. Ursu & Daria Dzyabura, 2020. "Retailers’ product location problem with consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 18(2), pages 125-154, June.
    18. Sanxi Li & Jun Yu & Mingsheng Zhang, 2024. "Search Prominence with Costly Product Returns," Papers 2410.06791, arXiv.org.
    19. Leon Yang Chu & Hamid Nazerzadeh & Heng Zhang, 2020. "Position Ranking and Auctions for Online Marketplaces," Management Science, INFORMS, vol. 66(8), pages 3617-3634, August.
    20. Raluca Ursu & Stephan Seiler & Elisabeth Honka, 2025. "The sequential search model: A framework for empirical research," Quantitative Marketing and Economics (QME), Springer, vol. 23(1), pages 165-213, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.08325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.