IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.08325.html
   My bibliography  Save this paper

Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms

Author

Listed:
  • Hangcheng Zhao
  • Ron Berman

Abstract

Online sellers have been adopting AI learning algorithms to automatically make product pricing and advertising decisions on e-commerce platforms. When sellers compete using such algorithms, one concern is that of tacit collusion - the algorithms learn to coordinate on higher than competitive. We empirically investigate whether these concerns are valid when sellers make pricing and advertising decisions together, i.e., two-dimensional decisions. Our empirical strategy is to analyze competition with multi-agent reinforcement learning, which we calibrate to a large-scale dataset collected from Amazon.com products. Our first contribution is to find conditions under which learning algorithms can facilitate win-win-win outcomes that are beneficial for consumers, sellers, and even the platform, when consumers have high search costs. In these cases the algorithms learn to coordinate on prices that are lower than competitive prices. The intuition is that the algorithms learn to coordinate on lower advertising bids, which lower advertising costs, leading to lower prices. Our second contribution is an analysis of a large-scale, high-frequency keyword-product dataset for more than 2 million products on Amazon.com. Our estimates of consumer search costs show a wide range of costs for different product keywords. We generate an algorithm usage and find a negative interaction between the estimated consumer search costs and the algorithm usage index, providing empirical evidence of beneficial collusion. Finally, we analyze the platform's strategic response. We find that reserve price adjustments will not increase profits for the platform, but commission adjustments will. Our analyses help alleviate some worries about the potentially harmful effects of competing learning algorithms, and can help sellers, platforms and policymakers to decide on whether to adopt or regulate such algorithms.

Suggested Citation

  • Hangcheng Zhao & Ron Berman, 2025. "Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms," Papers 2508.08325, arXiv.org.
  • Handle: RePEc:arx:papers:2508.08325
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.08325
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.08325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.