IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v42y2023i4p637-658.html
   My bibliography  Save this article

Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping

Author

Listed:
  • Xiao Liu

    (Stern School of Business, New York University, New York, New York 10012)

Abstract

We present an empirical framework for creating dynamic coupon targeting strategies for high-dimensional and high-frequency settings, and we test its performance using a large-scale field experiment. The framework captures consumers’ intertemporal tradeoffs associated with dynamic pricing and does not rely on functional form assumptions about consumers’ decision-making processes. The model is estimated using batch deep reinforcement learning (BDRL), which relies on Q-learning, a model-free solution that can mitigate model bias. It leverages deep neural networks to represent the high-dimensional state space and alleviate the curse of dimensionality. The empirical application is in a multibillion-dollar livestream shopping context. Our BDRL solution increases the platform’s revenue by twice as much as static targeting policies and by 20% more than the model-based solution. The comparative advantage of BDRL comes from more effective and automatic targeting of consumers based on both heterogeneity and dynamics, using exceptionally rich, nuanced differences among consumers and across time. We find that price skimming, reducing discounts for attractive hosts, and increasing the coupon discount level at a faster rate for low spenders are effective strategies based on dynamics, consumer heterogeneity, and the two combined, respectively.

Suggested Citation

  • Xiao Liu, 2023. "Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping," Marketing Science, INFORMS, vol. 42(4), pages 637-658, July.
  • Handle: RePEc:inm:ormksc:v:42:y:2023:i:4:p:637-658
    DOI: 10.1287/mksc.2022.1403
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.1403
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.1403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    3. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    4. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    5. Minkyung Kim & K. Sudhir & Kosuke Uetake, 2019. "A Structural Model of a Multitasking Salesforce: Multidimensional Incentives and Plan Design," Cowles Foundation Discussion Papers 2199R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2021.
    6. J. J. McCall, 1970. "Economics of Information and Job Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(1), pages 113-126.
    7. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    8. Kanishka Misra & Eric M. Schwartz & Jacob Abernethy, 2019. "Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments," Marketing Science, INFORMS, vol. 38(2), pages 226-252, March.
    9. Jean‐Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative explanations for consumer inertia," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 417-445, September.
    10. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    11. Yongyang Cai & Kenneth L. Judd, 2010. "Stable and Efficient Computational Methods for Dynamic Programming," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 626-634, 04-05.
    12. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    13. Abel P. Jeuland, 1979. "Brand Choice Inertia as One Aspect of the Notion of Brand Loyalty," Management Science, INFORMS, vol. 25(7), pages 671-682, July.
    14. Harald J. Heerde & Scott A. Neslin, 2017. "Sales Promotion Models," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 13-77, Springer.
    15. Winer, Russell S, 1986. "A Reference Price Model of Brand Choice for Frequently Purchased Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(2), pages 250-256, September.
    16. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    17. P. B. Seetharaman & Hai Che, 2009. "Price Competition in Markets with Consumer Variety Seeking," Marketing Science, INFORMS, vol. 28(3), pages 516-525, 05-06.
    18. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    19. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    2. Shosei Sakaguchi, 2024. "Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data," Papers 2404.00221, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya Morozov & Stephan Seiler & Xiaojing Dong & Liwen Hou, 2021. "Estimation of Preference Heterogeneity in Markets with Costly Search," Marketing Science, INFORMS, vol. 40(5), pages 871-899, September.
    2. Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
    3. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    4. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    5. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    6. Han Qiu, 2018. "An Inattention Model for Traveler Behavior with e-Coupons," Papers 1901.05070, arXiv.org.
    7. Navid Mojir & K. Sudhir, 2014. "Price Search Across Time and Across Stores," Cowles Foundation Discussion Papers 1942R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2019.
    8. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
    9. Thomas Blake & Chris Nosko & Steven Tadelis, 2016. "Returns to Consumer Search: Evidence from eBay," NBER Working Papers 22302, National Bureau of Economic Research, Inc.
    10. Andrew T. Ching & Matthew Osborne, 2020. "Identification and Estimation of Forward-Looking Behavior: The Case of Consumer Stockpiling," Marketing Science, INFORMS, vol. 39(4), pages 707-726, July.
    11. Matsumoto, Brett & Spence, Forrest, 2016. "Price beliefs and experience: Do consumers’ beliefs converge to empirical distributions with repeated purchases?," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 243-254.
    12. Kopalle, Praveen K. & Kannan, P.K. & Boldt, Lin Bao & Arora, Neeraj, 2012. "The impact of household level heterogeneity in reference price effects on optimal retailer pricing policies," Journal of Retailing, Elsevier, vol. 88(1), pages 102-114.
    13. Pranav Jindal, 2015. "Risk Preferences and Demand Drivers of Extended Warranties," Marketing Science, INFORMS, vol. 34(1), pages 39-58, January.
    14. Tiago Pires, 2016. "Costly search and consideration sets in storable goods markets," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 157-193, September.
    15. Nobuhiko Terui & Wirawan Dony Dahana, 2006. "Research Note—Estimating Heterogeneous Price Thresholds," Marketing Science, INFORMS, vol. 25(4), pages 384-391, 07-08.
    16. Raluca Ursu & Stephan Seiler & Elisabeth Honka, 2023. "The Sequential Search Model: A Framework for Empirical Research," CESifo Working Paper Series 10264, CESifo.
    17. Navid Mojir & K. Sudhir, 2014. "A Model of Multi-pass Search: Price Search across Stores and Time," Cowles Foundation Discussion Papers 1942R2, Cowles Foundation for Research in Economics, Yale University, revised Feb 2020.
    18. Ken Moon & Kostas Bimpikis & Haim Mendelson, 2018. "Randomized Markdowns and Online Monitoring," Management Science, INFORMS, vol. 64(3), pages 1271-1290, March.
    19. Przemysław Jeziorski & Elena Krasnokutskaya & Olivia Ceccarini, 2019. "Skimming from the Bottom: Empirical Evidence of Adverse Selection When Poaching Customers," Marketing Science, INFORMS, vol. 38(4), pages 543-566, July.
    20. Raluca M. Ursu & Qianyun Zhang & Elisabeth Honka, 2023. "Search Gaps and Consumer Fatigue," Marketing Science, INFORMS, vol. 42(1), pages 110-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:42:y:2023:i:4:p:637-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.