IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/1902.html
   My bibliography  Save this paper

To Brush or Not to Brush: Product Rankings, Customer Search, and Fake Orders

Author

Listed:
  • Chen Jin

    (National University of Singapore, School of Computing, Department of Information Systems and Analytics, 13 Computing Drive, Singapore 117417, Republic of Singapore)

  • Luyi Yang

    (Johns Hopkins University, Carey Business School, 100 International Drive, Baltimore, MD, 21202, USA)

  • Kartik Hosanagar

    (The University of Pennsylvania, the Wharton School, 3730 Walnut Street, 552 Jon M. Huntsman Hall, Philadelphia, PA, 19104, USA)

Abstract

“Brushing"---the practice of online merchants placing fake orders of their own products to artificially inflate sales on e-commerce platforms---has recently received widespread public attention. On the one hand, brushing enables merchants to boost their rankings in search results, because products with higher sales volume are often ranked higher. On the other hand, rankings matter because search frictions faced by customers narrow their attention to only the few products that show up at the top. Thus, fake orders from brushing may affect customer choice. We build a stylized model to understand merchants’ strategic brushing behavior and its welfare implications. We consider two competing merchants selling substitutable products (one of high quality, the other of low quality) in an evolutionary sales-based ranking system that assigns a higher ranking to a product with higher sales. In principle, such an adaptive system improves customer welfare relative to a case in which products are randomly ranked, but it also triggers brushing as an unintended consequence. Since the high-quality merchant receives a favorable bias in the sales-based ranking, he mainly has a defensive brushing incentive, whereas the low-quality merchant mostly has an offensive brushing incentive. As a result, brushing is a double-edged sword for customers. It may lead customer welfare to be even lower than what it would be in a random-ranking system, but in some other cases, it can surprisingly improve customer welfare. If brushing is more difficult for merchants (e.g., due to tougher regulations), it may make customers worse off as it attenuates brushing by the high-quality merchant but induces the low-quality one to brush more aggressively. If search is easier for customers (e.g., due to improved search technologies), it can actually hurt them as it may disproportionately discourage the high-quality merchant from brushing.

Suggested Citation

  • Chen Jin & Luyi Yang & Kartik Hosanagar, 2019. "To Brush or Not to Brush: Product Rankings, Customer Search, and Fake Orders," Working Papers 19-02, NET Institute.
  • Handle: RePEc:net:wpaper:1902
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Yang_19-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lizhen Xu & Jianqing Chen & Andrew Whinston, 2012. "Effects of the Presence of Organic Listing in Search Advertising," Information Systems Research, INFORMS, vol. 23(4), pages 1284-1302, December.
    2. Susan Athey & Glenn Ellison, 2011. "Position Auctions with Consumer Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1213-1270.
    3. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    4. Salvatore Piccolo & Piero Tedeschi & Giovanni Ursino, 2018. "Deceptive Advertising with Rational Buyers," Management Science, INFORMS, vol. 64(3), pages 1291-1310, March.
    5. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    6. Min Chen & Varghese S. Jacob & Suresh Radhakrishnan & Young U. Ryu, 2015. "Can Payment-per-Click Induce Improvements in Click Fraud Identification Technologies?," Information Systems Research, INFORMS, vol. 26(4), pages 754-772, December.
    7. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    8. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    9. Yongmin Chen & Chuan He, 2011. "Paid Placement: Advertising and Search on the Internet," Economic Journal, Royal Economic Society, vol. 121(556), pages 309-328, November.
    10. Zhou, Jidong, 2009. "Prominence and Consumer Search: The Case With Multiple Prominent Firms," MPRA Paper 12554, University Library of Munich, Germany.
    11. Mark Armstrong & John Vickers & Jidong Zhou, 2009. "Prominence and consumer search," RAND Journal of Economics, RAND Corporation, vol. 40(2), pages 209-233, June.
    12. Mark Armstrong & Jidong Zhou, 2011. "Paying for Prominence," Economic Journal, Royal Economic Society, vol. 121(556), pages 368-395, November.
    13. Kenneth S. Corts, 2014. "Finite Optimal Penalties for False Advertising," Journal of Industrial Economics, Wiley Blackwell, vol. 62(4), pages 661-681, December.
    14. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    15. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    16. Kenneth S. Corts, 2013. "Prohibitions on False and Unsubstantiated Claims: Inducing the Acquisition and Revelation of Information through Competition Policy," Journal of Law and Economics, University of Chicago Press, vol. 56(2), pages 453-486.
    17. Vibhanshu Abhishek & Kartik Hosanagar, 2013. "Optimal Bidding in Multi-Item Multislot Sponsored Search Auctions," Operations Research, INFORMS, vol. 61(4), pages 855-873, August.
    18. Salvatore Piccolo & Piero Tedeschi & Giovanni Ursino, 2015. "How limiting deceptive practices harms consumers," RAND Journal of Economics, RAND Corporation, vol. 46(3), pages 611-624, September.
    19. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
    20. Przemys?aw Jeziorski & Sridhar Moorthy, 2018. "Advertiser Prominence Effects in Search Advertising," Management Science, INFORMS, vol. 64(3), pages 1365-1383, March.
    21. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    22. Zsolt Katona & Miklos Sarvary, 2010. "The Race for Sponsored Links: Bidding Patterns for Search Advertising," Marketing Science, INFORMS, vol. 29(2), pages 199-215, 03-04.
    23. Shengqi Ye & Goker Aydin & Shanshan Hu, 2015. "Sponsored Search Marketing: Dynamic Pricing and Advertising for an Online Retailer," Management Science, INFORMS, vol. 61(6), pages 1255-1274, June.
    24. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Jin & Luyi Yang & Kartik Hosanagar, 2023. "To Brush or Not to Brush: Product Rankings, Consumer Search, and Fake Orders," Information Systems Research, INFORMS, vol. 34(2), pages 532-552, June.
    2. Raluca M. Ursu & Daria Dzyabura, 2020. "Retailers’ product location problem with consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 18(2), pages 125-154, June.
    3. Casner, Ben, 2020. "Seller curation in platforms," International Journal of Industrial Organization, Elsevier, vol. 72(C).
    4. Fei Long & Kinshuk Jerath & Miklos Sarvary, 2022. "Designing an Online Retail Marketplace: Leveraging Information from Sponsored Advertising," Marketing Science, INFORMS, vol. 41(1), pages 115-138, January.
    5. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    6. Sanxi Li & Jun Yu & Mingsheng Zhang, 2024. "Search Prominence with Costly Product Returns," Papers 2410.06791, arXiv.org.
    7. Li, Sanxi & Sun, Hailin & Yu, Jun, 2023. "Competitive targeted online advertising," International Journal of Industrial Organization, Elsevier, vol. 87(C).
    8. Zemin (Zachary) Zhong, 2023. "Platform Search Design: The Roles of Precision and Price," Marketing Science, INFORMS, vol. 42(2), pages 293-313, March.
    9. Mark Armstrong, 2017. "Ordered Consumer Search," Journal of the European Economic Association, European Economic Association, vol. 15(5), pages 989-1024.
    10. Fershtman, Chaim & Fishman, Arthur & Zhou, Jidong, 2018. "Search and categorization," International Journal of Industrial Organization, Elsevier, vol. 57(C), pages 225-254.
    11. Haan, Marco A. & Moraga-González, José L. & Petrikaitė, Vaiva, 2018. "A model of directed consumer search," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 223-255.
    12. Alex Jiyoung Kim & Subramanian Balachander, 2023. "Coordinating traditional media advertising and online advertising in brand marketing," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1865-1879, June.
    13. Paul Belleflamme & Martin Peitz, 2018. "Inside the Engine Room of Digital Platforms: Reviews, Ratings, and Recommendations," Working Papers halshs-01714549, HAL.
    14. Kemal Kıvanç Aköz & Cemal Eren Arbatli & Levent Celik, 2020. "Manipulation Through Biased Product Reviews," Journal of Industrial Economics, Wiley Blackwell, vol. 68(4), pages 591-639, December.
    15. Chen, Yongmin & Zhang, Tianle, 2018. "Intermediaries and consumer search," International Journal of Industrial Organization, Elsevier, vol. 57(C), pages 255-277.
    16. Roberto Burguet & Vaiva Petrikaitė, 2023. "Targeted advertising and costly consumer search," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 430-450, April.
    17. T. Tony Ke & Jiwoong Shin & Jungju Yu, 2023. "A Model of Product Portfolio Design: Guiding Consumer Search Through Brand Positioning," Marketing Science, INFORMS, vol. 42(6), pages 1101-1124, November.
    18. Wei Zhou & Zidong Wang, 2020. "Competing for Search Traffic in Query Markets: Entry Strategy, Platform Design, and Entrepreneurship," Working Papers 20-12, NET Institute.
    19. Motta, Massimo & Penta, Antonio, 2022. "Market Effects of Sponsored Search Auctions," TSE Working Papers 22-1370, Toulouse School of Economics (TSE).
    20. Burguet, Roberto & Caminal, Ramon & Ellman, Matthew, 2015. "In Google we trust?," International Journal of Industrial Organization, Elsevier, vol. 39(C), pages 44-55.

    More about this item

    Keywords

    search; rankings; brushing; fake; customer welfare;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:1902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.