IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.19911.html
   My bibliography  Save this paper

AI-Driven Spatial Distribution Dynamics: A Comprehensive Theoretical and Empirical Framework for Analyzing Productivity Agglomeration Effects in Japan's Aging Society

Author

Listed:
  • Tatsuru Kikuchi

Abstract

This paper develops the first comprehensive theoretical and empirical framework for analyzing AI-driven spatial distribution dynamics in metropolitan areas undergoing demographic transition. We extend New Economic Geography by formalizing five novel AI-specific mechanisms: algorithmic learning spillovers, digital infrastructure returns, virtual agglomeration effects, AI-human complementarity, and network externalities. Using Tokyo as our empirical laboratory, we implement rigorous causal identification through five complementary econometric strategies and develop machine learning predictions across 27 future scenarios spanning 2024-2050. Our theoretical framework generates six testable hypotheses, all receiving strong empirical support. The causal analysis reveals that AI implementation increases agglomeration concentration by 4.2-5.2 percentage points, with heterogeneous effects across industries: high AI-readiness sectors experience 8.4 percentage point increases, while low AI-readiness sectors show 1.2 percentage point gains. Machine learning predictions demonstrate that aggressive AI adoption can offset 60-80\% of aging-related productivity declines. We provide a strategic three-phase policy framework for managing AI-driven spatial transformation while promoting inclusive development. The integrated approach establishes a new paradigm for analyzing technology-driven spatial change with global applications for aging societies.

Suggested Citation

  • Tatsuru Kikuchi, 2025. "AI-Driven Spatial Distribution Dynamics: A Comprehensive Theoretical and Empirical Framework for Analyzing Productivity Agglomeration Effects in Japan's Aging Society," Papers 2507.19911, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.19911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.19911
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.19911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.