IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.18077.html
   My bibliography  Save this paper

Bayesian Deep Learning for Discrete Choice

Author

Listed:
  • Daniel F. Villarraga
  • Ricardo A. Daziano

Abstract

Discrete choice models (DCMs) are used to analyze individual decision-making in contexts such as transportation choices, political elections, and consumer preferences. DCMs play a central role in applied econometrics by enabling inference on key economic variables, such as marginal rates of substitution, rather than focusing solely on predicting choices on new unlabeled data. However, while traditional DCMs offer high interpretability and support for point and interval estimation of economic quantities, these models often underperform in predictive tasks compared to deep learning (DL) models. Despite their predictive advantages, DL models remain largely underutilized in discrete choice due to concerns about their lack of interpretability, unstable parameter estimates, and the absence of established methods for uncertainty quantification. Here, we introduce a deep learning model architecture specifically designed to integrate with approximate Bayesian inference methods, such as Stochastic Gradient Langevin Dynamics (SGLD). Our proposed model collapses to behaviorally informed hypotheses when data is limited, mitigating overfitting and instability in underspecified settings while retaining the flexibility to capture complex nonlinear relationships when sufficient data is available. We demonstrate our approach using SGLD through a Monte Carlo simulation study, evaluating both predictive metrics--such as out-of-sample balanced accuracy--and inferential metrics--such as empirical coverage for marginal rates of substitution interval estimates. Additionally, we present results from two empirical case studies: one using revealed mode choice data in NYC, and the other based on the widely used Swiss train choice stated preference data.

Suggested Citation

  • Daniel F. Villarraga & Ricardo A. Daziano, 2025. "Bayesian Deep Learning for Discrete Choice," Papers 2505.18077, arXiv.org.
  • Handle: RePEc:arx:papers:2505.18077
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.18077
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.18077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.