IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.05350.html
   My bibliography  Save this paper

Non-linear Phillips Curve for India: Evidence from Explainable Machine Learning

Author

Listed:
  • Shovon Sengupta
  • Bhanu Pratap
  • Amit Pawar

Abstract

The conventional linear Phillips curve model, while widely used in policymaking, often struggles to deliver accurate forecasts in the presence of structural breaks and inherent nonlinearities. This paper addresses these limitations by leveraging machine learning methods within a New Keynesian Phillips Curve framework to forecast and explain headline inflation in India, a major emerging economy. Our analysis demonstrates that machine learning-based approaches significantly outperform standard linear models in forecasting accuracy. Moreover, by employing explainable machine learning techniques, we reveal that the Phillips curve relationship in India is highly nonlinear, characterized by thresholds and interaction effects among key variables. Headline inflation is primarily driven by inflation expectations, followed by past inflation and the output gap, while supply shocks, except rainfall, exert only a marginal influence. These findings highlight the ability of machine learning models to improve forecast accuracy and uncover complex, nonlinear dynamics in inflation data, offering valuable insights for policymakers.

Suggested Citation

  • Shovon Sengupta & Bhanu Pratap & Amit Pawar, 2025. "Non-linear Phillips Curve for India: Evidence from Explainable Machine Learning," Papers 2504.05350, arXiv.org.
  • Handle: RePEc:arx:papers:2504.05350
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.05350
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ball, Laurence & Chari, Anusha & Mishra, Prachi, 2016. "Understanding Inflation in India," India Policy Forum, National Council of Applied Economic Research, vol. 12(1), pages 1-45.
    2. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    3. Mohanty, Deepak & John, Joice, 2015. "Determinants of inflation in India," Journal of Asian Economics, Elsevier, vol. 36(C), pages 86-96.
    4. Laurence Ball & Sandeep Mazumder, 2019. "A Phillips Curve with Anchored Expectations and Short‐Term Unemployment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 111-137, February.
    5. Taylor, John B, 1980. "Aggregate Dynamics and Staggered Contracts," Journal of Political Economy, University of Chicago Press, vol. 88(1), pages 1-23, February.
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Alexander Doser & Ricardo Nunes & Nikhil Rao & Viacheslav Sheremirov, 2023. "Inflation expectations and nonlinearities in the Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 453-471, June.
    8. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
    9. A. W. Phillips, 1958. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," Economica, London School of Economics and Political Science, vol. 25(100), pages 283-299, November.
    10. Annalisa Cristini & Piero Ferri, 2021. "Nonlinear models of the Phillips curve," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1129-1155, September.
    11. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    12. Paul, Biru Paksha, 2009. "In search of the Phillips curve for India," Journal of Asian Economics, Elsevier, vol. 20(4), pages 479-488, September.
    13. Rangarajan Chakravarty, 2020. "The New Monetary Policy Framework: What it Means," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 457-470, June.
    14. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
    15. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    16. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    17. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    18. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    19. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    20. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Sbordone, Argia M., 2002. "Prices and unit labor costs: a new test of price stickiness," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 265-292, March.
    23. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    24. Roberts, John M, 1995. "New Keynesian Economics and the Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(4), pages 975-984, November.
    25. Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
    26. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    27. Jonathon Hazell & Juan Herreño & Emi Nakamura & Jón Steinsson, 2022. "The Slope of the Phillips Curve: Evidence from U.S. States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(3), pages 1299-1344.
    28. Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
    29. Kapur, Muneesh, 2013. "Revisiting the Phillips curve for India and inflation forecasting," Journal of Asian Economics, Elsevier, vol. 25(C), pages 17-27.
    30. Kishor, N. Kundan & Pratap, Bhanu, 2023. "The Role of Inflation Targeting in Anchoring Long-Run Inflation Expectations: Evidence from India," MPRA Paper 118951, University Library of Munich, Germany.
    31. Barry Eichengreen & Poonam Gupta, 2024. "Inflation Targeting in India: A Further Assessment," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 18(1-2), pages 7-42, February.
    32. Mazumder, Sandeep, 2011. "The stability of the Phillips curve in India: Does the Lucas critique apply?," Journal of Asian Economics, Elsevier, vol. 22(6), pages 528-539.
    33. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    34. Aaron Smalter Hall, 2018. "Machine Learning Approaches to Macroeconomic Forecasting," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 63-81.
    35. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    36. Naveen Srinivasan & Vidya Mahambare & M. Ramachandran, 2006. "Modelling Inflation in India: A Critique of the Structuralist Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 4(2), pages 45-58, July.
    37. James H. Stock & Mark W. Watson, 2020. "Slack and Cyclically Sensitive Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(S2), pages 393-428, December.
    38. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    39. Michael Debabrata Patra & Partha Ray, 2010. "Inflation Expectations and Monetary Policy in India: An Empirical Exploration," IMF Working Papers 2010/084, International Monetary Fund.
    40. Marcus Buckmann & Andreas Joseph, 2023. "An Interpretable Machine Learning Workflow with an Application to Economic Forecasting," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 449-522, October.
    41. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    42. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2024. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Post-Print hal-05056934, HAL.
    2. Bhavesh Salunkhe & Anuradha Patnaik, 2019. "Inflation Dynamics and Monetary Policy in India: A New Keynesian Phillips Curve Perspective," South Asian Journal of Macroeconomics and Public Finance, , vol. 8(2), pages 144-179, December.
    3. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    4. Manuel M. F. Martins & Fabio Verona, 2024. "Forecasting Inflation with the New Keynesian Phillips Curve: Frequencies Matter," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 811-832, August.
    5. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    6. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
    7. Behera, Harendra Kumar & Patra, Michael Debabrata, 2022. "Measuring trend inflation in India," Journal of Asian Economics, Elsevier, vol. 80(C).
    8. Franz Xaver Zobl & Martin Ertl, 2021. "The Condemned Live Longer – New Evidence of the New Keynesian Phillips Curve in Central and Eastern Europe," Open Economies Review, Springer, vol. 32(4), pages 671-699, September.
    9. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    10. Sunil Paul & Sartaj Rasool Rather & M. Ramachandran, 2015. "Money and Inflation: Evidence from P-Star Model," Working Papers 2015-115, Madras School of Economics,Chennai,India.
    11. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    12. Brent Meyer & Nicholas B. Parker & Xuguang Sheng, 2021. "Unit Cost Expectations and Uncertainty: Firms' Perspectives on Inflation," FRB Atlanta Working Paper 2021-12a, Federal Reserve Bank of Atlanta.
    13. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    14. Szafranek, Karol, 2017. "Flattening of the New Keynesian Phillips curve: Evidence for an emerging, small open economy," Economic Modelling, Elsevier, vol. 63(C), pages 334-348.
    15. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    16. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    17. Kose, M. Ayhan & Matsuoka, Hideaki & Panizza, Ugo & Vorisek, Dana, 2019. "Inflation Expectations: Review and Evidence," CEPR Discussion Papers 13601, C.E.P.R. Discussion Papers.
    18. Takushi Kurozumi & Willem Van Zandweghe, 2023. "A Theory of Intrinsic Inflation Persistence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(8), pages 1961-2000, December.
    19. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    20. Chengsi Zhang & Denise R. Osborn & Dong Heon Kim, 2008. "The New Keynesian Phillips Curve: From Sticky Inflation to Sticky Prices," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(4), pages 667-699, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.05350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.