IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.14072.html
   My bibliography  Save this paper

Leveraging Knowledge Networks: Rethinking Technological Value Distribution in mRNA Vaccine Innovations

Author

Listed:
  • Rossana Mastrandrea
  • Fabio Montobbio
  • Gabriele Pellegrino
  • Massimo Riccaboni
  • Valerio Sterzi

Abstract

This study examines the roles of public and private sector actors in the development of mRNA vaccines, a breakthrough innovation in modern medicine. Using a dataset of 151 core patent families and 2,416 antecedent (cited) patents, we analyze the structure and dynamics of the mRNA vaccine knowledge network through network theory. Our findings highlight the central role of biotechnology firms, such as Moderna and BioNTech, alongside the crucial contributions of universities and public research organizations (PROs) in providing foundational knowledge.We develop a novel credit allocation framework, showing that universities, PROs, government and research centers account for at least 27% of the external technological knowledge base behind mRNA vaccine breakthroughs - representing a minimum threshold of their overall contribution. Our study offers new insights into pharmaceutical and biotechnology innovation dynamics, emphasizing how Moderna and BioNTech's mRNA technologies have benefited from academic institutions, with notable differences in their institutional knowledge sources.

Suggested Citation

  • Rossana Mastrandrea & Fabio Montobbio & Gabriele Pellegrino & Massimo Riccaboni & Valerio Sterzi, 2025. "Leveraging Knowledge Networks: Rethinking Technological Value Distribution in mRNA Vaccine Innovations," Papers 2503.14072, arXiv.org.
  • Handle: RePEc:arx:papers:2503.14072
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.14072
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert N. Kirchdoerfer & Christopher A. Cottrell & Nianshuang Wang & Jesper Pallesen & Hadi M. Yassine & Hannah L. Turner & Kizzmekia S. Corbett & Barney S. Graham & Jason S. McLellan & Andrew B. Ward, 2016. "Pre-fusion structure of a human coronavirus spike protein," Nature, Nature, vol. 531(7592), pages 118-121, March.
    2. Gittelman, Michelle, 2016. "The revolution re-visited: Clinical and genetics research paradigms and the productivity paradox in drug discovery," Research Policy, Elsevier, vol. 45(8), pages 1570-1585.
    3. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    4. Jason Owen-Smith & Massimo Riccaboni & Fabio Pammolli & Walter W. Powell, 2002. "A Comparison of U.S. and European University-Industry Relations in the Life Sciences," Management Science, INFORMS, vol. 48(1), pages 24-43, January.
    5. Matthew L Wallace & Vincent Larivière & Yves Gingras, 2012. "A Small World of Citations? The Influence of Collaboration Networks on Citation Practices," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    6. Sampat, B.N., 2009. "Academic patents and access to medicines in developing countries," American Journal of Public Health, American Public Health Association, vol. 99(1), pages 9-17.
    7. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    8. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    9. Massimo Florio, 2022. "To what extent patents for Covid-19 mRNA vaccines are based on public research and taxpayers’ funding? A case study on the privatization of knowledge [For Billion-Dollar COVID Vaccines, Basic Gover," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(5), pages 1137-1151.
    10. Arielle D'Souza & Kendall Hoyt & Christopher M. Snyder & Alec Stapp, 2024. "Can Operation Warp Speed Serve as a Model for Accelerating Innovations beyond COVID Vaccines?," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 103-138, National Bureau of Economic Research, Inc.
    11. Agarwal, Ruchir & Gaule, Patrick, 2022. "What drives innovation? Lessons from COVID-19 R&D," Journal of Health Economics, Elsevier, vol. 82(C).
    12. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    13. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    14. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    15. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    16. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    17. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    18. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    19. Reinhilde Veugelers, 2021. "mRNA vaccines- a lucky shot?," Bruegel Working Papers 46292, Bruegel.
    20. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).
    21. Orsenigo, L. & Pammolli, F. & Riccaboni, Massimo, 2001. "Technological change and network dynamics: Lessons from the pharmaceutical industry," Research Policy, Elsevier, vol. 30(3), pages 485-508, March.
    22. Narin, Francis & Olivastro, Dominic, 1992. "Status report: Linkage between technology and science," Research Policy, Elsevier, vol. 21(3), pages 237-249, June.
    23. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    24. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    25. McKelvey, Maureen & Alm, Hakan & Riccaboni, Massimo, 2003. "Does co-location matter for formal knowledge collaboration in the Swedish biotechnology-pharmaceutical sector?," Research Policy, Elsevier, vol. 32(3), pages 483-501, March.
    26. Fabio Pammolli & Massimo Riccaboni & Alessandro Spelta, 2021. "The network origins of Schumpeterian innovation," Journal of Evolutionary Economics, Springer, vol. 31(5), pages 1411-1431, November.
    27. Barberá-Tomás, David & Jiménez-Sáez, Fernando & Castelló-Molina, Itziar, 2011. "Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks," Research Policy, Elsevier, vol. 40(3), pages 473-486, April.
    28. Manajit Chakraborty & Maksym Byshkin & Fabio Crestani, 2020. "Patent citation network analysis: A perspective from descriptive statistics and ERGMs," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-28, December.
    29. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    30. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    31. DiMasi, Joseph A. & Hansen, Ronald W. & Grabowski, Henry G., 2003. "The price of innovation: new estimates of drug development costs," Journal of Health Economics, Elsevier, vol. 22(2), pages 151-185, March.
    32. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    2. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    3. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    4. Sandro Montresor & Gianluca Orsatti & Francesco Quatraro, 2023. "Technological novelty and key enabling technologies: evidence from European regions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(6), pages 851-872, August.
    5. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    6. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    7. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    8. Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
    9. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    10. P. G. J. Persoon & R. N. A. Bekkers & F. Alkemade, 2020. "How cumulative is technological knowledge?," Papers 2012.00095, arXiv.org, revised May 2021.
    11. Jeongsik “Jay” Lee & Hyun Ju Jung & Hyunwoo Park, 2023. "Rare is beautiful? Rareness, technology value, and the moderating role of search domain and knowledge maturity," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1019-1040, April.
    12. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    13. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    14. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    15. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    16. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    17. Lorenzo Ardito & Roger Svensson, 2024. "Sourcing applied and basic knowledge for innovation and commercialization success," The Journal of Technology Transfer, Springer, vol. 49(3), pages 959-995, June.
    18. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.
    19. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    20. Silvestri, Daniela & Riccaboni, Massimo & Della Malva, Antonio, 2018. "Sailing in all winds: Technological search over the business cycle," Research Policy, Elsevier, vol. 47(10), pages 1933-1944.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.14072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.