IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i1d10.1007_s11192-020-03757-2.html
   My bibliography  Save this article

Does research collaboration influence the “disruption” of articles? Evidence from neurosciences

Author

Listed:
  • Dongqing Lyu

    (Nanjing University)

  • Kaile Gong

    (Nanjing Normal University)

  • Xuanmin Ruan

    (Nanjing University)

  • Ying Cheng

    (Nanjing University)

  • Jiang Li

    (Nanjing University)

Abstract

A new indicator (the disruption index) quantifying the extent to which a paper disrupts or consolidates established knowledge was recently introduced from the perspective of subsequent use of the current knowledge. This study explored whether different types of collaboration (i.e., at the author, institution, and country levels) equally affect the disruption of papers. We selected 505,168 papers from Neurosciences indexed in the Web of Science from 1954–2011 and employed logistic regression analysis. Our principal findings are that team size and international collaboration are negatively associated with the disruption of articles, while an additional increase in the number of domestic institutions of a team statistically favors disruption.

Suggested Citation

  • Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03757-2
    DOI: 10.1007/s11192-020-03757-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03757-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03757-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. Ali Gazni & Fereshteh Didegah, 2011. "Investigating different types of research collaboration and citation impact: a case study of Harvard University’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 251-265, May.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    5. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    6. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    7. Lutz Bornmann, 2017. "Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? An analysis based on data from F1000Prime and normalized citation scores," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 1036-1047, April.
    8. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    9. Robert D. Dewar & Jane E. Dutton, 1986. "The Adoption of Radical and Incremental Innovations: An Empirical Analysis," Management Science, INFORMS, vol. 32(11), pages 1422-1433, November.
    10. Strumsky, Deborah & Lobo, José, 2015. "Identifying the sources of technological novelty in the process of invention," Research Policy, Elsevier, vol. 44(8), pages 1445-1461.
    11. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    12. John E. Ettlie & William P. Bridges & Robert D. O'Keefe, 1984. "Organization Strategy and Structural Differences for Radical Versus Incremental Innovation," Management Science, INFORMS, vol. 30(6), pages 682-695, June.
    13. Isabel Iribarren-Maestro & María Luisa Lascurain-Sánchez & Elías Sanz-Casado, 2009. "Are multi-authorship and visibility related? Study of ten research areas at Carlos III University of Madrid," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 191-200, April.
    14. Caroline S. Wagner & Travis A. Whetsell & Loet Leydesdorff, 2017. "Growth of international collaboration in science: revisiting six specialties," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1633-1652, March.
    15. Toluwase Asubiaro, 2019. "How collaboration type, publication place, funding and author’s role affect citations received by publications from Africa: A bibliometric study of LIS research from 1996 to 2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1261-1287, September.
    16. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    17. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    18. Zi‐Lin He, 2009. "International collaboration does not have greater epistemic authority," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2151-2164, October.
    19. Christoph Bartneck & Jun Hu, 2010. "The fruits of collaboration in a multidisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 41-52, October.
    20. Vicente P. Guerrero Bote & Carlos Olmeda-Gómez & Félix Moya-Anegón, 2013. "Quantifying the benefits of international scientific collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 392-404, February.
    21. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    22. Ali Gazni & Vincent Larivière & Fereshteh Didegah, 2016. "The effect of collaborators on institutions’ scientific impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1209-1230, November.
    23. Franceschet, Massimo & Costantini, Antonio, 2010. "The effect of scholar collaboration on impact and quality of academic papers," Journal of Informetrics, Elsevier, vol. 4(4), pages 540-553.
    24. Lutz Bornmann & Alexander Tekles, 2019. "Disruptive papers published in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 331-336, July.
    25. Wagner, Caroline S. & Leydesdorff, Loet, 2005. "Network structure, self-organization, and the growth of international collaboration in science," Research Policy, Elsevier, vol. 34(10), pages 1608-1618, December.
    26. González-Álvarez, Julio & Cervera-Crespo, Teresa, 2017. "Research production in high-impact journals of contemporary neuroscience: A gender analysis," Journal of Informetrics, Elsevier, vol. 11(1), pages 232-243.
    27. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    28. Olle Persson & Wolfgang Glänzel & Rickard Danell, 2004. "Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 421-432, August.
    29. Bárbara S. Lancho Barrantes & Vicente P. Guerrero Bote & Zaida Chinchilla Rodríguez & Félix de Moya Anegón, 2012. "Citation flows in the zones of influence of scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 481-489, March.
    30. Bercovitz, Janet & Feldman, Maryann, 2011. "The mechanisms of collaboration in inventive teams: Composition, social networks, and geography," Research Policy, Elsevier, vol. 40(1), pages 81-93, February.
    31. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    32. Adams, James D. & Black, Grant C. & Clemmons, J. Roger & Stephan, Paula E., 2005. "Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981-1999," Research Policy, Elsevier, vol. 34(3), pages 259-285, April.
    33. Bárbara S. Lancho Barrantes & Vicente P. Guerrero Bote & Zaida Chinchilla Rodríguez & Félix de Moya Anegón, 2012. "Citation flows in the zones of influence of scientific collaborations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 481-489, March.
    34. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    35. Pardeep Sud & Mike Thelwall, 2016. "Not all international collaboration is beneficial: The Mendeley readership and citation impact of biochemical research collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(8), pages 1849-1857, August.
    36. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    37. Lutz Bornmann & Sitaram Devarakonda & Alexander Tekles & George Chacko, 2020. "Disruptive papers published in Scientometrics: meaningful results by using an improved variant of the disruption index originally proposed by Wu, Wang, and Evans (2019)," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 1149-1155, May.
    38. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    39. Wolfgang Glänzel & András Schubert, 2001. "Double effort = Double impact? A critical view at international co-authorship in chemistry," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(2), pages 199-214, February.
    40. Wagner, Caroline S. & Whetsell, Travis A. & Mukherjee, Satyam, 2019. "International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination," Research Policy, Elsevier, vol. 48(5), pages 1260-1270.
    41. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    42. Norman Kaplan, 1965. "The norms of citation behavior: Prolegomena to the footnote," American Documentation, Wiley Blackwell, vol. 16(3), pages 179-184, July.
    43. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    44. Jiann-wien Hsu & Ding-wei Huang, 2011. "Correlation between impact and collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 317-324, February.
    45. María Bordons & Javier Aparicio & Rodrigo Costas, 2013. "Heterogeneity of collaboration and its relationship with research impact in a biomedical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 443-466, August.
    46. Radhamany Sooryamoorthy, 2009. "Do types of collaboration change citation? Collaboration and citation patterns of South African science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 177-193, October.
    47. Jian Qin & F. W. Lancaster & Bryce Allen, 1997. "Types and levels of collaboration in interdisciplinary research in the sciences," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(10), pages 893-916, October.
    48. Bloch, Carter & Ryan, Thomas K. & Andersen, Jens Peter, 2019. "Public-private collaboration and scientific impact: An analysis based on Danish publication data for 1995–2013," Journal of Informetrics, Elsevier, vol. 13(2), pages 593-604.
    49. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    50. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    51. Dong-Jae Kim & Bruce Kogut, 1996. "Technological Platforms and Diversification," Organization Science, INFORMS, vol. 7(3), pages 283-301, June.
    52. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    53. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    54. Ilya V. Ponomarev & Brian K. Lawton & Duane E. Williams & Joshua D. Schnell, 2014. "Breakthrough paper indicator 2.0: can geographical diversity and interdisciplinarity improve the accuracy of outstanding papers prediction?," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 755-765, September.
    55. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    56. Cummings, Jonathon N. & Kiesler, Sara, 2007. "Coordination costs and project outcomes in multi-university collaborations," Research Policy, Elsevier, vol. 36(10), pages 1620-1634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    2. Tokmachev, Andrey M., 2023. "Regular collective dynamics of research collaboration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner, Caroline S. & Whetsell, Travis A. & Mukherjee, Satyam, 2019. "International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination," Research Policy, Elsevier, vol. 48(5), pages 1260-1270.
    2. Hongquan Shen & Juan Xie & Jiang Li & Ying Cheng, 2021. "The correlation between scientific collaboration and citation count at the paper level: a meta-analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3443-3470, April.
    3. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    4. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    5. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    7. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    8. Sandro Montresor & Gianluca Orsatti & Francesco Quatraro, 2023. "Technological novelty and key enabling technologies: evidence from European regions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(6), pages 851-872, August.
    9. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    10. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    11. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).
    12. António Osório & Lutz Bornmann, 2021. "On the disruptive power of small-teams research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 117-133, January.
    13. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    14. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    15. Quentin Plantec & Pascal Le Masson & Benoit Weil, 2020. "Impact of knowledge search practices on the originality of inventions: a study in the oil & gas industry," Post-Print hal-02613665, HAL.
    16. Liu, Meijun & Jaiswal, Ajay & Bu, Yi & Min, Chao & Yang, Sijie & Liu, Zhibo & Acuña, Daniel & Ding, Ying, 2022. "Team formation and team impact: The balance between team freshness and repeat collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    17. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    18. Plantec, Quentin & Le Masson, Pascal & Weil, Benoît, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    19. Mike Thelwall & Kayvan Kousha & Mahshid Abdoli & Emma Stuart & Meiko Makita & Paul Wilson & Jonathan Levitt, 2023. "Why are coauthored academic articles more cited: Higher quality or larger audience?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 791-810, July.
    20. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03757-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.