IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02613665.html
   My bibliography  Save this paper

Impact of knowledge search practices on the originality of inventions: a study in the oil & gas industry

Author

Listed:
  • Quentin Plantec

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris sciences et lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, INPI - Institut National de la Propriété Industrielle)

  • Pascal Le Masson

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris sciences et lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

  • Benoit Weil

    (CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris sciences et lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique)

Abstract

The paper suggests a new taxonomy of knowledge search modes to describe the creative process of new invention design, in particular how firms combine knowledge components from their own knowledge base-taking into account both the components and the structures of knowledge bases-with those from newly acquired or newly internally developed. Using network theory techniques, we defined four knowledge search modes: (1) refinement, (2) clustering, (3) absorption and (4) recomposition. We conducted an exploratory study on the oil & gas industry, reviewing 50,776 utility patents filed by 16 major firms between 1989 and 2016. The results showed, first, that firms relied to varying extents on different knowledge search modes in their invention design processes. Second, reviewing the technological originality of the designed inventions showed that simply absorbing new knowledge components, without major changes in knowledge base structure, was associated with low technological originality, but constituted one of the main knowledge search modes used by the analyzed firms. In contrast, major changes in knowledge base structure favored technological originality, with or without new knowledge components, but were nevertheless the least used mode. Understanding organizational learning practices associated with the phenomena described here can foster innovation performance in firms.

Suggested Citation

  • Quentin Plantec & Pascal Le Masson & Benoit Weil, 2020. "Impact of knowledge search practices on the originality of inventions: a study in the oil & gas industry," Post-Print hal-02613665, HAL.
  • Handle: RePEc:hal:journl:hal-02613665
    Note: View the original document on HAL open archive server: https://minesparis-psl.hal.science/hal-02613665
    as

    Download full text from publisher

    File URL: https://minesparis-psl.hal.science/hal-02613665/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. David J. Teece, 2008. "Firm organization, industrial structure, and technological innovation," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 11, pages 265-296, World Scientific Publishing Co. Pte. Ltd..
    4. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    5. Strumsky, Deborah & Lobo, José, 2015. "Identifying the sources of technological novelty in the process of invention," Research Policy, Elsevier, vol. 44(8), pages 1445-1461.
    6. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    7. Armand Hatchuel & Yoram Reich & Pascal Le Masson & Benoit Weil & Akin Kazakçi, 2013. "Beyond Models and Decisions: Situating Design through generative functions," Post-Print hal-01485144, HAL.
    8. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2000. "Market Value and Patent Citations: A First Look," NBER Working Papers 7741, National Bureau of Economic Research, Inc.
    9. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    10. Choi, Hyundo & Shin, Jungwoo & Hwang, Won-Sik, 2018. "Two faces of scientific knowledge in the external technology search process," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 41-50.
    11. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    12. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    13. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    14. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    15. Marine Agogué & Akin Osman Kazakçi & Armand Hatchuel & Pascal Le Masson & Benoit Weil & Nicolas Poirel & Mathieu Cassotti, 2014. "The impacts of examples on creative design : explaining fixation and stimulation effects," Post-Print hal-00707354, HAL.
    16. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    17. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    18. Sebastian Raisch & Julian Birkinshaw & Gilbert Probst & Michael L. Tushman, 2009. "Organizational Ambidexterity: Balancing Exploitation and Exploration for Sustained Performance," Organization Science, INFORMS, vol. 20(4), pages 685-695, August.
    19. Korotayev, Andrey & Bilyuga, Stanislav & Belalov, Ilya & Goldstone, Jack, 2018. "Oil prices, socio-political destabilization risks, and future energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 304-310.
    20. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    21. Jeff Alstott & Giorgio Triulzi & Bowen Yan & Jianxi Luo, 2017. "Mapping technology space by normalizing patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 443-479, January.
    22. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    23. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    24. Moncada-Paternò-Castello, Pietro & Ciupagea, Constantin & Smith, Keith & Tübke, Alexander & Tubbs, Mike, 2010. "Does Europe perform too little corporate R&D? A comparison of EU and non-EU corporate R&D performance," Research Policy, Elsevier, vol. 39(4), pages 523-536, May.
    25. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    26. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    27. Nakamura, Hiroko & Suzuki, Shinji & Sakata, Ichiro & Kajikawa, Yuya, 2015. "Knowledge combination modeling: The measurement of knowledge similarity between different technological domains," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 187-201.
    28. Daniel A. Levinthal & James G. March, 1993. "The myopia of learning," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 95-112, December.
    29. Pascal Le Masson & Benoit Weil & Armand Hatchuel, 2010. "Strategic Management of Design and Innovation," Post-Print hal-00696953, HAL.
    30. Benn Lawson & Danny Samson, 2001. "Developing Innovation Capability In Organisations: A Dynamic Capabilities Approach," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 377-400.
    31. Dahlin, Kristina B. & Behrens, Dean M., 2005. "When is an invention really radical?: Defining and measuring technological radicalness," Research Policy, Elsevier, vol. 34(5), pages 717-737, June.
    32. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    33. Cooper, Arnold C. & Schendel, Dan, 1976. "Strategic responses to technological threats," Business Horizons, Elsevier, vol. 19(1), pages 61-69, February.
    34. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    35. Kristina Dahlin & Deans M. Behrens, 2005. "When is an invention really radical? Defining and measuring technological radicalness," Post-Print hal-00480416, HAL.
    36. José Lobo & Deborah Strumsky, 2019. "Sources of inventive novelty: two patent classification schemas, same story," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 19-37, July.
    37. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plantec, Quentin & Le Masson, Pascal & Weil, Benoît, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    2. Plantec, Quentin & Deval, Marie-Alix & Hooge, Sophie & Weil, Benoit, 2023. "Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry," Technovation, Elsevier, vol. 124(C).
    3. Avimanyu Datta, 2016. "Antecedents To Radical Innovations: A Longitudinal Look At Firms In The Information Technology Industry By Aggregation Of Patents," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-31, October.
    4. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    5. Quentin Plantec & Pascal Le Masson & Benoît Weil, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Post-Print halshs-03203124, HAL.
    6. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    7. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    8. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Kathryn Rudie Harrigan & Maria Chiara DiGuardo, 2017. "Sustainability of patent-based competitive advantage in the U.S. communications services industry," The Journal of Technology Transfer, Springer, vol. 42(6), pages 1334-1361, December.
    10. Cammarano, Antonello & Michelino, Francesca & Lamberti, Emilia & Caputo, Mauro, 2017. "Accumulated stock of knowledge and current search practices: The impact on patent quality," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 204-222.
    11. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    12. McCarthy, Killian J & Aalbers, Hendrik Leendert, 2022. "Alliance-to-acquisition transitions: The technological performance implications of acquiring one's alliance partners," Research Policy, Elsevier, vol. 51(6).
    13. Kathryn Rudie Harrigan & Maria Chiara Guardo & Elona Marku, 2018. "Patent value and the Tobin’s q ratio in media services," The Journal of Technology Transfer, Springer, vol. 43(1), pages 1-19, February.
    14. Nils Grashof & Alexander Kopka, 2023. "Artificial intelligence and radical innovation: an opportunity for all companies?," Small Business Economics, Springer, vol. 61(2), pages 771-797, August.
    15. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    16. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.
    17. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    18. Kolja Hesse & Dirk Fornahl, 2020. "Essential ingredients for radical innovations? The role of (un‐)related variety and external linkages in Germany," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1165-1183, October.
    19. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    20. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.

    More about this item

    Keywords

    Knowledge search; Patent; Oil & gas; technological originality; knowledge base;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02613665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.