IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.07341.html
   My bibliography  Save this paper

The Economics of p(doom): Scenarios of Existential Risk and Economic Growth in the Age of Transformative AI

Author

Listed:
  • Jakub Growiec
  • Klaus Prettner

Abstract

Recent advances in artificial intelligence (AI) have led to a diverse set of predictions about its long-term impact on humanity. A central focus is the potential emergence of transformative AI (TAI), eventually capable of outperforming humans in all economically valuable tasks and fully automating labor. Discussed scenarios range from human extinction after a misaligned TAI takes over ("AI doom") to unprecedented economic growth and abundance ("post-scarcity"). However, the probabilities and implications of these scenarios remain highly uncertain. Here, we organize the various scenarios and evaluate their associated existential risks and economic outcomes in terms of aggregate welfare. Our analysis shows that even low-probability catastrophic outcomes justify large investments in AI safety and alignment research. We find that the optimizing representative individual would rationally allocate substantial resources to mitigate extinction risk; in some cases, she would prefer not to develop TAI at all. This result highlights that current global efforts in AI safety and alignment research are vastly insufficient relative to the scale and urgency of existential risks posed by TAI. Our findings therefore underscore the need for stronger safeguards to balance the potential economic benefits of TAI with the prevention of irreversible harm. Addressing these risks is crucial for steering technological progress toward sustainable human prosperity.

Suggested Citation

  • Jakub Growiec & Klaus Prettner, 2025. "The Economics of p(doom): Scenarios of Existential Risk and Economic Growth in the Age of Transformative AI," Papers 2503.07341, arXiv.org.
  • Handle: RePEc:arx:papers:2503.07341
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.07341
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Robert J. Gordon, 2016. "The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War," Economics Books, Princeton University Press, edition 1, number 10544.
    3. Peretto, Pietro F. & Seater, John J., 2013. "Factor-eliminating technical change," Journal of Monetary Economics, Elsevier, vol. 60(4), pages 459-473.
    4. Grill, Kalle, 2023. "The Sum of Averages: An Egyptology-Proof Average View," Utilitas, Cambridge University Press, vol. 35(2), pages 103-118, June.
    5. Guvenen, Fatih, 2006. "Reconciling conflicting evidence on the elasticity of intertemporal substitution: A macroeconomic perspective," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1451-1472, October.
    6. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    7. Francesco Filippucci & Peter Gal & Matthias Schief, 2024. "Miracle or Myth? Assessing the macroeconomic productivity gains from Artificial Intelligence," OECD Artificial Intelligence Papers 29, OECD Publishing.
    8. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    9. Raj Chetty, 2006. "A New Method of Estimating Risk Aversion," American Economic Review, American Economic Association, vol. 96(5), pages 1821-1834, December.
    10. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    11. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    12. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    13. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    14. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    15. David Manheim & Scott Garrabrant, 2018. "Categorizing Variants of Goodhart's Law," Papers 1803.04585, arXiv.org, revised Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    2. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    3. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    4. David E. Bloom & Klaus Prettner & Jamel Saadaoui & Mario Veruete, 2023. "Artificial intelligence and the skill premium," Papers 2311.09255, arXiv.org.
    5. Rod Tyers & Yixiao Zhou, 2023. "Automation and inequality with taxes and transfers," Scottish Journal of Political Economy, Scottish Economic Society, vol. 70(1), pages 68-100, February.
    6. Klarl, Torben, 2022. "Fragile robots, economic growth and convergence," Economic Modelling, Elsevier, vol. 112(C).
    7. Abeliansky, Ana Lucia & Prettner, Klaus, 2023. "Automation and population growth: Theory and cross-country evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 208(C), pages 345-358.
    8. Martin Labaj & Daniel Dujava, 2019. "Economic growth and convergence during the transition to production using automation capital," Department of Economic Policy Working Paper Series 017, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
    9. Gene M. Grossman & Elhanan Helpman & Ezra Oberfield & Thomas Sampson, 2017. "The productivity slowdown and the declining labor share: a neoclassical exploration," CEP Discussion Papers dp1504, Centre for Economic Performance, LSE.
    10. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    11. Krenz, Astrid & Strulik, Holger, 2025. "Automation and the fall and rise of the servant economy," European Economic Review, Elsevier, vol. 172(C).
    12. Michael Kuhn & Klaus Prettner, 2023. "Rising Longevity, Increasing the Retirement Age, and the Consequences for Knowledge‐based Long‐run Growth," Economica, London School of Economics and Political Science, vol. 90(357), pages 39-64, January.
    13. Prettner, Klaus, 2023. "Stagnant wages in the face of rising labor productivity: The potential role of industrial robots," Finance Research Letters, Elsevier, vol. 58(PD).
    14. Franziska Brall & Ramona Schmid, 2023. "Automation, robots and wage inequality in Germany: A decomposition analysis," LABOUR, CEIS, vol. 37(1), pages 33-95, March.
    15. Ana Lucia Abeliansky & Klaus Prettner, 2021. "Population Growth and Automation Density: Theory and CrossCountry Evidence," VID Working Papers 2102, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    16. Arthur Jacobs & Freddy Heylen, 2021. "Demographic change, secular stagnation and inequality: automation as a blessing?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1030, Ghent University, Faculty of Economics and Business Administration.
    17. Gene Grossman & Elhanan Helpman & Ezra Oberfield & Thomas Sampson, 2018. "The Productivity Slowdown and the Declining Labor Share," 2018 Meeting Papers 169, Society for Economic Dynamics.
    18. Shohei Momoda & Takayuki Ogawa & Ryosuke Shimizu, 2024. "Automation and Growth Patterns in an Open Economy," KIER Working Papers 1109, Kyoto University, Institute of Economic Research.
    19. Dario Cords & Klaus Prettner, 2022. "Technological unemployment revisited: automation in a search and matching framework [The future of work: meeting the global challenges of demographic change and automation]," Oxford Economic Papers, Oxford University Press, vol. 74(1), pages 115-135.
    20. Xiaomeng Zhang & Theodore Palivos & Xiangbo Liu, 2022. "Aging and automation in economies with search frictions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(2), pages 621-642, April.

    More about this item

    JEL classification:

    • I30 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.07341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.