IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.00474.html

Learning, Diversity and Adaptation in Changing Environments: The Role of Weak Links

Author

Listed:
  • Daron Acemoglu
  • Asuman Ozdaglar
  • Sarath Pattathil

Abstract

Adaptation to dynamic conditions requires a certain degree of diversity. If all agents take the best current action, learning that the underlying state has changed and behavior should adapt will be slower. Diversity is harder to maintain when there is fast communication between agents, because they tend to find out and pursue the best action rapidly. We explore these issues using a model of (Bayesian) learning over a social network. Agents learn rapidly from and may also have incentives to coordinate with others to whom they are connected via strong links. We show, however, that when the underlying environment changes sufficiently rapidly, any network consisting of just strong links will do only a little better than random choice in the long run. In contrast, networks combining strong and weak links, whereby the latter type of links transmit information only slowly, can achieve much higher long-run average payoffs. The best social networks are those that combine a large fraction of agents into a strongly-connected component, while still maintaining a sufficient number of smaller communities that make diverse choices and communicate with this component via weak links.

Suggested Citation

  • Daron Acemoglu & Asuman Ozdaglar & Sarath Pattathil, 2023. "Learning, Diversity and Adaptation in Changing Environments: The Role of Weak Links," Papers 2305.00474, arXiv.org.
  • Handle: RePEc:arx:papers:2305.00474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.00474
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bonatti, Alessandro & Hörner, Johannes, 2017. "Learning to disagree in a game of experimentation," Journal of Economic Theory, Elsevier, vol. 169(C), pages 234-269.
    2. Raphaël Levy & Marcin Pęski & Nicolas Vieille, 2024. "Stationary Social Learning in a Changing Environment," Econometrica, Econometric Society, vol. 92(6), pages 1939-1966, November.
    3. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-1071, September.
    4. La Ferrara, Eliana & Mele, Angelo, 2006. "Racial Segregation and Public School Expenditure," CEPR Discussion Papers 5750, C.E.P.R. Discussion Papers.
    5. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    6. José G. Montalvo & Marta Reynal-Querol, 2021. "Ethnic Diversity and Growth: Revisiting the Evidence," The Review of Economics and Statistics, MIT Press, vol. 103(3), pages 521-532, July.
    7. Godfrey Keller & Sven Rady & Martin Cripps, 2005. "Strategic Experimentation with Exponential Bandits," Econometrica, Econometric Society, vol. 73(1), pages 39-68, January.
    8. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    9. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    10. Matthew R. Goddard & H. Charles J. Godfray & Austin Burt, 2005. "Sex increases the efficacy of natural selection in experimental yeast populations," Nature, Nature, vol. 434(7033), pages 636-640, March.
    11. Callander, Steven & Hörner, Johannes, 2009. "The wisdom of the minority," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1421-1439.2, July.
    12. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    13. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    14. Marco Ottaviani & Giuseppe Moscarini & Lones Smith, 1998. "Social learning in a changing world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(3), pages 657-665.
    15. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    16. Daron Acemoglu & Ali Makhdoumi & Azarakhsh Malekian & Asuman Ozdaglar, 2022. "Learning From Reviews: The Selection Effect and the Speed of Learning," Econometrica, Econometric Society, vol. 90(6), pages 2857-2899, November.
    17. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xianxiang & Bi, Qingmiao & Wu, Manling & Zhu, Xiaoyu (Ross), 2025. "Speaking differently: How dialect affects E-government adoption," Journal of Economic Behavior & Organization, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Florian Brandl, 2025. "The Social Learning Barrier," Papers 2504.12136, arXiv.org, revised Aug 2025.
    3. Polanski, Arnold & Vega-Redondo, Fernando, 2023. "Homophily and influence," Journal of Economic Theory, Elsevier, vol. 207(C).
    4. Opolot, Daniel & Azomahou, Theophile, 2012. "Learning and convergence in networks," MERIT Working Papers 2012-074, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    5. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    6. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    7. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    8. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2014. "Imitation and the role of information in overcoming coordination failures," Games and Economic Behavior, Elsevier, vol. 87(C), pages 397-411.
    9. Foerster, Manuel, 2019. "Dynamics of strategic information transmission in social networks," Theoretical Economics, Econometric Society, vol. 14(1), January.
    10. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    11. Fulin Guo, 2023. "Experience-weighted attraction learning in network coordination games," Papers 2310.18835, arXiv.org.
    12. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    13. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining influential models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318081, HAL.
    14. Georg, Co-Pierre, 2014. "Contagious herding and endogenous network formation in financial networks," Working Paper Series 1700, European Central Bank.
    15. Michel Grabisch & Agnieszka Rusinowska, 2010. "Iterating influence between players in a social network," Documents de travail du Centre d'Economie de la Sorbonne 10089, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Wanying Huang & Philipp Strack & Omer Tamuz, 2024. "Learning in Repeated Interactions on Networks," Econometrica, Econometric Society, vol. 92(1), pages 1-27, January.
    17. Syngjoo Choi & Sanjeev Goyal & Frederic Moisan & Yu Yang Tony To, 2023. "Learning in Networks: An Experiment on Large Networks with Real-World Features," Management Science, INFORMS, vol. 69(5), pages 2778-2787, May.
    18. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    19. Vincent Mak & Rami Zwick, 2014. "Experimenting and learning with localized direct communication," Experimental Economics, Springer;Economic Science Association, vol. 17(2), pages 262-284, June.
    20. Larson, Nathan, 2015. "Inertia in social learning from a summary statistic," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 596-626.

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.00474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.