IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.12060.html
   My bibliography  Save this paper

emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves

Author

Listed:
  • Weiwei Xiong
  • Katsumasa Tanaka
  • Philippe Ciais
  • Daniel J. A. Johansson
  • Mariliis Lehtveer

Abstract

We developed an emulator for Integrated Assessment Models (emIAM) based on a marginal abatement cost (MAC) curve approach. Using the output of IAMs in the ENGAGE Scenario Explorer and the GET model, we derived a large set of MAC curves: ten IAMs; global and eleven regions; three gases CO2, CH4, and N2O; eight portfolios of available mitigation technologies; and two emission sources. We tested the performance of emIAM by coupling it with a simple climate model ACC2. We found that the optimizing climate-economy model emIAM-ACC2 adequately reproduced a majority of original IAM emission outcomes under similar conditions, allowing systematic explorations of IAMs with small computational resources. emIAM can expand the capability of simple climate models as a tool to calculate cost-effective pathways linked directly to a temperature target.

Suggested Citation

  • Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
  • Handle: RePEc:arx:papers:2212.12060
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.12060
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariliis Lehtveer & Fredrik Hedenus, 2015. "Nuclear power as a climate mitigation strategy - technology and proliferation risk," Journal of Risk Research, Taylor & Francis Journals, vol. 18(3), pages 273-290, March.
    2. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    3. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    4. Kirsten Zickfeld & Deven Azevedo & Sabine Mathesius & H. Damon Matthews, 2021. "Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions," Nature Climate Change, Nature, vol. 11(7), pages 613-617, July.
    5. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    6. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    7. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    8. Daniel J. A. Johansson, 2021. "The question of overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1021-1022, December.
    9. Katsumasa Tanaka & Thomas Raddatz, 2011. "Correlation between climate sensitivity and aerosol forcing and its implication for the “climate trap”," Climatic Change, Springer, vol. 109(3), pages 815-825, December.
    10. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    11. Katsumasa Tanaka & Otávio Cavalett & William J. Collins & Francesco Cherubini, 2019. "Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales," Nature Climate Change, Nature, vol. 9(5), pages 389-396, May.
    12. Frank C. Errickson & Klaus Keller & William D. Collins & Vivek Srikrishnan & David Anthoff, 2021. "Equity is more important for the social cost of methane than climate uncertainty," Nature, Nature, vol. 592(7855), pages 564-570, April.
    13. Babiker, Mustafa & Gurgel, Angelo & Paltsev, Sergey & Reilly, John, 2009. "Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison," Economic Modelling, Elsevier, vol. 26(6), pages 1341-1354, November.
    14. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    15. N. B. Melnikov & A. P. Gruzdev & M. G. Dalton & M. Weitzel & B. C. O’Neill, 2021. "Parallel Extended Path Method for Solving Perfect Foresight Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 517-534, August.
    16. A. Reisinger & P. Havlik & K. Riahi & O. Vliet & M. Obersteiner & M. Herrero, 2013. "Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture," Climatic Change, Springer, vol. 117(4), pages 677-690, April.
    17. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    18. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    19. Malte Schwoon & Richard S.J. Tol, 2006. "Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 25-60.
    20. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    21. Paterson McKeough, 2022. "A case for ensuring reductions in CO2 emissions are given priority over reductions in CH4 emissions in the near term," Climatic Change, Springer, vol. 174(1), pages 1-16, September.
    22. van Vuuren, Detlef P. & de Vries, Bert & Eickhout, Bas & Kram, Tom, 2004. "Responses to technology and taxes in a simulated world," Energy Economics, Elsevier, vol. 26(4), pages 579-601, July.
    23. Katsumasa Tanaka & Daniel Johansson & Brian O’Neill & Jan Fuglestvedt, 2013. "Emission metrics under the 2 °C climate stabilization target," Climatic Change, Springer, vol. 117(4), pages 933-941, April.
    24. Mathijs J. H. M. Harmsen & Maarten Berg & Volker Krey & Gunnar Luderer & Adriana Marcucci & Jessica Strefler & Detlef P. Van Vuuren, 2016. "How climate metrics affect global mitigation strategies and costs: a multi-model study," Climatic Change, Springer, vol. 136(2), pages 203-216, May.
    25. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    2. repec:hal:ciredw:hal-00916328 is not listed on IDEAS
    3. Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011. "When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves," Policy Research Working Paper Series 5803, The World Bank.
    4. repec:hal:wpaper:hal-00916328 is not listed on IDEAS
    5. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    6. Benjamin Dequiedt & Dominic Moran, 2014. "The cost of emissions mitigation by legume crops in French agriculture," Working Papers 1410, Chaire Economie du climat.
    7. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    8. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    9. Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
    10. Alexander Keiko & Fedor Veselov & Andrey Solyanik, 2022. "Decarbonization Options in the Russian Energy Sector: a Comparative Study on Their Economic Efficiency," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 368-378, July.
    11. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    12. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    13. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    14. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    16. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    17. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    18. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    19. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    20. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    21. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    22. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.12060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.