IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.09104.html
   My bibliography  Save this paper

Causal Inference and Data Fusion in Econometrics

Author

Listed:
  • Paul Hunermund

    (Copenhagen Business School)

  • Elias Bareinboim

    (Columbia University)

Abstract

Learning about cause and effect is arguably the main goal in applied econometrics. In practice, the validity of these causal inferences is contingent on a number of critical assumptions regarding the type of data that has been collected and the substantive knowledge that is available. For instance, unobserved confounding factors threaten the internal validity of estimates, data availability is often limited to non-random, selection-biased samples, causal effects need to be learned from surrogate experiments with imperfect compliance, and causal knowledge has to be extrapolated across structurally heterogeneous populations. A powerful causal inference framework is required to tackle these challenges, which plague most data analysis to varying degrees. Building on the structural approach to causality introduced by Haavelmo (1943) and the graph-theoretic framework proposed by Pearl (1995), the artificial intelligence (AI) literature has developed a wide array of techniques for causal learning that allow to leverage information from various imperfect, heterogeneous, and biased data sources (Bareinboim and Pearl, 2016). In this paper, we discuss recent advances in this literature that have the potential to contribute to econometric methodology along three dimensions. First, they provide a unified and comprehensive framework for causal inference, in which the aforementioned problems can be addressed in full generality. Second, due to their origin in AI, they come together with sound, efficient, and complete algorithmic criteria for automatization of the corresponding identification task. And third, because of the nonparametric description of structural models that graph-theoretic approaches build on, they combine the strengths of both structural econometrics as well as the potential outcomes framework, and thus offer an effective middle ground between these two literature streams.

Suggested Citation

  • Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
  • Handle: RePEc:arx:papers:1912.09104
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.09104
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2021. "From Local to Global: External Validity in a Fertility Natural Experiment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 217-243, January.
    3. Abhijit V. Banerjee & Shawn Cole & Esther Duflo & Leigh Linden, 2007. "Remedying Education: Evidence from Two Randomized Experiments in India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1235-1264.
    4. David Card & Jochen Kluve & Andrea Weber, 2010. "Active Labour Market Policy Evaluations: A Meta-Analysis," Economic Journal, Royal Economic Society, vol. 120(548), pages 452-477, November.
    5. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    6. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    7. Cartwright,Nancy, 2007. "Hunting Causes and Using Them," Cambridge Books, Cambridge University Press, number 9780521860819, October.
    8. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    9. Heckman, James & Pinto, Rodrigo, 2015. "Causal Analysis After Haavelmo," Econometric Theory, Cambridge University Press, vol. 31(1), pages 115-151, February.
    10. Maddala,G. S., 1986. "Limited-Dependent and Qualitative Variables in Econometrics," Cambridge Books, Cambridge University Press, number 9780521338257, October.
    11. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75, Elsevier.
    12. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    13. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    14. Cartwright,Nancy, 2007. "Hunting Causes and Using Them," Cambridge Books, Cambridge University Press, number 9780521677981, October.
    15. John A. List, 2011. "Why Economists Should Conduct Field Experiments and 14 Tips for Pulling One Off," Journal of Economic Perspectives, American Economic Association, vol. 25(3), pages 3-16, Summer.
    16. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    17. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    18. Emi Nakamura & Jón Steinsson, 2018. "Identification in Macroeconomics," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 59-86, Summer.
    19. Esther Duflo & Emmanuel Saez, 2003. "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 815-842.
    20. Adam N. Glynn & Konstantin Kashin, 2017. "Front‐Door Difference‐in‐Differences Estimators," American Journal of Political Science, John Wiley & Sons, vol. 61(4), pages 989-1002, October.
    21. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    22. repec:feb:artefa:0110 is not listed on IDEAS
    23. Amanda E. Kowalski, 2018. "How to Examine External Validity Within an Experiment," NBER Working Papers 24834, National Bureau of Economic Research, Inc.
    24. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    25. Zellner, Arnold, 1979. "Causality and econometrics," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 10(1), pages 9-54, January.
    26. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
    27. Ihlanfeldt, Keith R. & Martinez-Vazquez, Jorge, 1986. "Alternative value estimates of owner-occupied housing: Evidence on sample selection bias and systematic errors," Journal of Urban Economics, Elsevier, vol. 20(3), pages 356-369, November.
    28. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    29. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    30. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    31. Rachael Meager, 2019. "Understanding the Average Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 57-91, January.
    32. Meager, Rachael, 2019. "Understanding the average impact of microcredit expansions: a Bayesian hierarchical analysis of seven randomized experiments," LSE Research Online Documents on Economics 88190, London School of Economics and Political Science, LSE Library.
    33. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shantanu Gupta & Zachary C. Lipton & David Childers, 2020. "Estimating Treatment Effects with Observed Confounders and Mediators," Papers 2003.11991, arXiv.org, revised Jun 2021.
    2. Klebel, Thomas & Traag, Vincent, 2024. "Introduction to causality in science studies," SocArXiv 4bw9e, Center for Open Science.
    3. Tinoush Jamali Jaghdani & Ulf Johansen & Maitri Thakur & Thomas Glauben, 2024. "Salmon trade duration: The application of firm‐level trade transaction data from the Norwegian salmon industry," Agribusiness, John Wiley & Sons, Ltd., vol. 40(2), pages 325-348, April.
    4. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
    5. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    6. Hünermund Paul & Louw Beyers & Caspi Itamar, 2023. "Double machine learning and automated confounder selection: A cautionary tale," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-12, January.
    7. Hardik Rajpal & Omar A Guerrero, 2023. "Synergistic Small Worlds that Drive Technological Sophistication," Papers 2301.04579, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    3. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    4. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    5. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    6. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    7. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    8. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    9. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    10. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    11. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    12. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    13. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    14. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    15. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    16. Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
    17. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    18. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    19. Angus Deaton, 2009. "Instruments of development: Randomization in the tropics, and the search for the elusive keys to economic development," Working Papers 1128, Princeton University, Woodrow Wilson School of Public and International Affairs, Center for Health and Wellbeing..
    20. John Engberg & Dennis Epple & Jason Imbrogno & Holger Sieg & Ron Zimmer, 2009. "Estimation of Causal Effects in Experiments with Multiple Sources of Noncompliance," NBER Working Papers 14842, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.09104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.