IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.19788.html
   My bibliography  Save this paper

Semiparametric Triple Difference Estimators

Author

Listed:
  • Sina Akbari
  • Negar Kiyavash
  • AmirEmad Ghassami

Abstract

The triple difference causal inference framework is an extension of the well-known difference-in-differences framework. It relaxes the parallel trends assumption of the difference-in-differences framework through leveraging data from an auxiliary domain. Despite being commonly applied in empirical research, the triple difference framework has received relatively limited attention in the statistics literature. Specifically, investigating the intricacies of identification and the design of robust and efficient estimators for this framework has remained largely unexplored. This work aims to address these gaps in the literature. From the identification standpoint, we present outcome regression and weighting methods to identify the average treatment effect on the treated in both panel data and repeated cross-section settings. For the latter, we relax the commonly made assumption of time-invariant covariates. From the estimation perspective, we consider semiparametric estimators for the triple difference framework in both panel data and repeated cross-sections settings. These estimators are based upon the cross-fitting technique, and flexible machine learning tools can be used to estimate the nuisance components. We demonstrate that our proposed estimators are doubly robust, and we characterize the conditions under which they are consistent and asymptotically normal.

Suggested Citation

  • Sina Akbari & Negar Kiyavash & AmirEmad Ghassami, 2025. "Semiparametric Triple Difference Estimators," Papers 2502.19788, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.19788
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.19788
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Olden & Jarle Møen, 2022. "The triple difference estimator [Semiparametric difference-in-differences estimators]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 531-553.
    2. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    5. David Card, 1989. "The Impact of the Mariel Boatlift on the Miami Labor Market," Working Papers 633, Princeton University, Department of Economics, Industrial Relations Section..
    6. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    7. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    8. Orley Ashenfelter & David Card, 1984. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," Working Papers 554, Princeton University, Department of Economics, Industrial Relations Section..
    9. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    10. Torous William & Gunsilius Florian & Rigollet Philippe, 2024. "An optimal transport approach to estimating causal effects via nonlinear difference-in-differences," Journal of Causal Inference, De Gruyter, vol. 12(1), pages 1-26.
    11. Paul Hunermund & Elias Bareinboim, 2019. "Causal Inference and Data Fusion in Econometrics," Papers 1912.09104, arXiv.org, revised Mar 2023.
    12. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    13. William Torous & Florian Gunsilius & Philippe Rigollet, 2021. "An Optimal Transport Approach to Estimating Causal Effects via Nonlinear Difference-in-Differences," Papers 2108.05858, arXiv.org, revised Mar 2024.
    14. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    15. Seung‐Hyun Hong, 2013. "Measuring The Effect Of Napster On Recorded Music Sales: Difference‐In‐Differences Estimates Under Compositional Changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 297-324, March.
    16. David Card, 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market," ILR Review, Cornell University, ILR School, vol. 43(2), pages 245-257, January.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Castiel Chen Zhuang, 2024. "A Way to Synthetic Triple Difference," Papers 2409.12353, arXiv.org, revised Sep 2024.
    19. Pedro H. C. Sant'Anna & Qi Xu, 2023. "Difference-in-Differences with Compositional Changes," Papers 2304.13925, arXiv.org, revised Jan 2025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Michael Zimmert, 2018. "Efficient Difference-in-Differences Estimation with High-Dimensional Common Trend Confounding," Papers 1809.01643, arXiv.org, revised Aug 2020.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    5. Herrero Prieto, Luis César, 2009. "La investigación en economía de la cultura en España: un estudio bibliométrico/Research in Cultural Economics in Spain: A Bibliometric Study," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 35-62, Abril.
    6. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    7. Maria Petrillo & Daniel Valdenegro & Charles Rahal & Yanan Zhang & Gwilym Pryce & Matthew R. Bennett, 2024. "Estimating the Cost of Informal Care with a Novel Two-Stage Approach to Individual Synthetic Control," Papers 2411.10314, arXiv.org, revised Nov 2024.
    8. Yixiao Sun & Haitian Xie & Yuhang Zhang, 2025. "Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation," Papers 2503.11375, arXiv.org.
    9. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.
    10. Rösner, Anja & Haucap, Justus & Heimeshoff, Ulrich, 2020. "The impact of consumer protection in the digital age: Evidence from the European Union," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    11. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    12. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    13. Erlend E. Bø & Joel Slemrod & Thor O. Thoresen, 2015. "Taxes on the Internet: Deterrence Effects of Public Disclosure," American Economic Journal: Economic Policy, American Economic Association, vol. 7(1), pages 36-62, February.
    14. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    15. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    16. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    17. Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
    18. Franziska Zimmert & Michael Zimmert, 2024. "Part‐time subsidies and maternal reemployment: Evidence from a difference‐in‐differences analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1149-1171, September.
    19. Dionysia Lambiri & Alessandra Faggian & Neil Wrigley, 2017. "Linked-trip effects of ‘town-centre-first' era foodstore development: An assessment using difference-in-differences," Environment and Planning B, , vol. 44(1), pages 160-179, January.
    20. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.19788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.