IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.11375.html
   My bibliography  Save this paper

Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation

Author

Listed:
  • Yixiao Sun
  • Haitian Xie
  • Yuhang Zhang

Abstract

Difference-in-Differences (DiD) and Synthetic Control (SC) are widely used methods for causal inference in panel data, each with its own strengths and limitations. In this paper, we propose a novel methodology that integrates the advantages of both DiD and SC approaches. Our integrated approach provides a doubly robust identification strategy for causal effects in panel data with a group structure, identifying the average treatment effect on the treated (ATT) under either the parallel trends assumption or the group-level SC assumption. Building on this identification result, we develop a unified semiparametric framework for estimating the ATT. Notably, while the identification-robust moment function satisfies Neyman orthogonality under the parallel trends assumption, it does not under the SC assumption, leading to different asymptotic variances under these two identification strategies. To address this challenge, we propose a multiplier bootstrap method that consistently approximates the asymptotic distribution, regardless of which identification assumption holds. Furthermore, we extend our methodology to accommodate repeated cross-sectional data and staggered treatment designs. As an empirical application, we apply our method to evaluate the impact of the 2003 minimum wage increase in Alaska on family income.

Suggested Citation

  • Yixiao Sun & Haitian Xie & Yuhang Zhang, 2025. "Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation," Papers 2503.11375, arXiv.org.
  • Handle: RePEc:arx:papers:2503.11375
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.11375
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arindrajit Dube, 2019. "Minimum Wages and the Distribution of Family Incomes," American Economic Journal: Applied Economics, American Economic Association, vol. 11(4), pages 268-304, October.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    3. Meyer, Bruce D & Viscusi, W Kip & Durbin, David L, 1995. "Workers' Compensation and Injury Duration: Evidence from a Natural Experiment," American Economic Review, American Economic Association, vol. 85(3), pages 322-340, June.
    4. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    6. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2023. "Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data," Econometrica, Econometric Society, vol. 91(6), pages 2125-2154, November.
    7. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    8. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    9. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    10. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    11. Neng-Chieh Chang, 2020. "Double/debiased machine learning for difference-in-differences models," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 177-191.
    12. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    13. F. F. Gunsilius, 2023. "Distributional Synthetic Controls," Econometrica, Econometric Society, vol. 91(3), pages 1105-1117, May.
    14. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    15. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    16. Finkelstein, Amy, 2002. "The effect of tax subsidies to employer-provided supplementary health insurance: evidence from Canada," Journal of Public Economics, Elsevier, vol. 84(3), pages 305-339, June.
    17. Corak, Miles, 2001. "Death and Divorce: The Long-Term Consequences of Parental Loss on Adolescents," Journal of Labor Economics, University of Chicago Press, vol. 19(3), pages 682-715, July.
    18. Michael W. Robbins & Jessica Saunders & Beau Kilmer, 2017. "A Framework for Synthetic Control Methods With High-Dimensional, Micro-Level Data: Evaluating a Neighborhood-Specific Crime Intervention," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 109-126, January.
    19. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    20. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    21. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    22. Shu Shen & Xiaohan Zhang, 2016. "Distributional Tests for Regression Discontinuity: Theory and Empirical Examples," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 685-700, October.
    23. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    24. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    25. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    26. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    27. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1529-1564, October.
    28. Alma Cohen & Liran Einav, 2003. "The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 828-843, November.
    29. Paul Goldsmith-Pinkham, 2024. "Tracking the Credibility Revolution across Fields," Papers 2405.20604, arXiv.org, revised Jun 2024.
    30. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    31. Ding, Peng & Li, Fan, 2019. "A Bracketing Relationship between Difference-in-Differences and Lagged-Dependent-Variable Adjustment," Political Analysis, Cambridge University Press, vol. 27(4), pages 605-615, October.
    32. Yingying Dong & Ying-Ying Lee & Michael Gou, 2023. "Regression Discontinuity Designs With a Continuous Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 208-221, January.
    33. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2019. "nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference," Papers 1906.00198, arXiv.org.
    34. Maxwell Kellogg & Magne Mogstad & Guillaume A. Pouliot & Alexander Torgovitsky, 2021. "Combining Matching and Synthetic Control to Tradeoff Biases From Extrapolation and Interpolation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1804-1816, October.
    35. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    3. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    4. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    5. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    6. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    7. Florian F Gunsilius, 2025. "A primer on optimal transport for causal inference with observational data," Papers 2503.07811, arXiv.org, revised Mar 2025.
    8. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    9. Justin C. Wiltshire, 2023. "Walmart Supercenters and Monopsony Power: How A Large, Low-Wage Employer Impacts Local Labor Markets," Department Discussion Papers 2304, Department of Economics, University of Victoria.
    10. repec:ags:aaea22:335971 is not listed on IDEAS
    11. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2024. "Semiparametric Bayesian Difference-in-Differences," Papers 2412.04605, arXiv.org, revised Dec 2024.
    12. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    14. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    15. Ben Deaner & Chen-Wei Hsiang & Andrei Zeleneev, 2025. "Inferring Treatment Effects in Large Panels by Uncovering Latent Similarities," Papers 2503.20769, arXiv.org, revised Mar 2025.
    16. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    17. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.
    18. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    20. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    21. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.11375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.