IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.09545.html
   My bibliography  Save this paper

A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning

Author

Listed:
  • Pan Zhao
  • Yifan Cui

Abstract

Recently, there has been a surge in methodological development for the difference-in-differences (DiD) approach to evaluate causal effects. Standard methods in the literature rely on the parallel trends assumption to identify the average treatment effect on the treated. However, the parallel trends assumption may be violated in the presence of unmeasured confounding, and the average treatment effect on the treated may not be useful in learning a treatment assignment policy for the entire population. In this article, we propose a general instrumented DiD approach for learning the optimal treatment policy. Specifically, we establish identification results using a binary instrumental variable (IV) when the parallel trends assumption fails to hold. Additionally, we construct a Wald estimator, novel inverse probability weighting (IPW) estimators, and a class of semiparametric efficient and multiply robust estimators, with theoretical guarantees on consistency and asymptotic normality, even when relying on flexible machine learning algorithms for nuisance parameters estimation. Furthermore, we extend the instrumented DiD to the panel data setting. We evaluate our methods in extensive simulations and a real data application.

Suggested Citation

  • Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
  • Handle: RePEc:arx:papers:2310.09545
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.09545
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Zengri Wang, 2003. "Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function," Biometrika, Biometrika Trust, vol. 90(4), pages 765-775, December.
    4. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    5. Yichun Hu & Nathan Kallus & Xiaojie Mao, 2022. "Fast Rates for Contextual Linear Optimization," Management Science, INFORMS, vol. 68(6), pages 4236-4245, June.
    6. Weibin Mo & Zhengling Qi & Yufeng Liu, 2021. "Rejoinder: Learning Optimal Distributionally Robust Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 699-707, April.
    7. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    8. Shi, Chengchun & Fan, Ailin & Song, Rui & Lu, Wenbin, 2018. "High-dimensional A-learning for optimal dynamic treatment regimes," LSE Research Online Documents on Economics 102113, London School of Economics and Political Science, LSE Library.
    9. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    10. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    11. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    12. Aronow, Peter M. & Carnegie, Allison, 2013. "Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable," Political Analysis, Cambridge University Press, vol. 21(4), pages 492-506.
    13. Ashkan Ertefaie & Robert L Strawderman, 2018. "Constructing dynamic treatment regimes over indefinite time horizons," Biometrika, Biometrika Trust, vol. 105(4), pages 963-977.
    14. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    15. Xinkun Nie & Emma Brunskill & Stefan Wager, 2021. "Learning When-to-Treat Policies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 392-409, January.
    16. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    17. Mebane Jr., Walter R. & Sekhon, Jasjeet S., 2011. "Genetic Optimization Using Derivatives: The rgenoud Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i11).
    18. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    19. Bo Zhang & Jordan Weiss & Dylan S. Small & Qingyuan Zhao, 2021. "Selecting and Ranking Individualized Treatment Rules With Unmeasured Confounding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 295-308, March.
    20. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    21. Liangjun Su & Irina Murtazashvili & Aman Ullah, 2013. "Local Linear GMM Estimation of Functional Coefficient IV Models With an Application to Estimating the Rate of Return to Schooling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 184-207, April.
    22. Weibin Mo & Zhengling Qi & Yufeng Liu, 2021. "Learning Optimal Distributionally Robust Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 659-674, April.
    23. Vella, Francis, 1994. "Gender Roles and Human Capital Investment: The Relationship between Traditional Attitudes and Female Labour Market Performance," Economica, London School of Economics and Political Science, vol. 61(242), pages 191-211, May.
    24. Shi, Chengchun & Zhu, Jin & Shen, Ye & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2022. "Off-policy confidence interval estimation with confounded Markov decision process," LSE Research Online Documents on Economics 115774, London School of Economics and Political Science, LSE Library.
    25. Elizabeth L. Ogburn & Andrea Rotnitzky & James M. Robins, 2015. "Doubly robust estimation of the local average treatment effect curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 373-396, March.
    26. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Mar 2024.
    3. Gao, Yuhe & Shi, Chengchun & Song, Rui, 2023. "Deep spectral Q-learning with application to mobile health," LSE Research Online Documents on Economics 119445, London School of Economics and Political Science, LSE Library.
    4. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    5. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    6. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    8. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    9. Yi Zhang & Eli Ben-Michael & Kosuke Imai, 2022. "Safe Policy Learning under Regression Discontinuity Designs with Multiple Cutoffs," Papers 2208.13323, arXiv.org, revised Jul 2023.
    10. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    11. Shuxiao Chen & Bo Zhang, 2021. "Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable," Papers 2104.07822, arXiv.org.
    12. Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
    13. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    14. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    15. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    17. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    18. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    19. Marcus Roller, Daniel Steinberg, 2023. "Differences-in-Differences with multiple Treatments under Control," Diskussionsschriften credresearchpaper41, Universitaet Bern, Departement Volkswirtschaft - CRED.
    20. Shosei Sakaguchi, 2024. "Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data," Papers 2404.00221, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.09545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.