IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.13323.html
   My bibliography  Save this paper

Safe Policy Learning under Regression Discontinuity Designs with Multiple Cutoffs

Author

Listed:
  • Yi Zhang
  • Eli Ben-Michael
  • Kosuke Imai

Abstract

The regression discontinuity (RD) design is widely used for program evaluation with observational data. The primary focus of the existing literature has been the estimation of the local average treatment effect at the existing treatment cutoff. In contrast, we consider policy learning under the RD design. Because the treatment assignment mechanism is deterministic, learning better treatment cutoffs requires extrapolation. We develop a robust optimization approach to finding optimal treatment cutoffs that improve upon the existing ones. We first decompose the expected utility into point-identifiable and unidentifiable components. We then propose an efficient doubly-robust estimator for the identifiable parts. To account for the unidentifiable components, we leverage the existence of multiple cutoffs that are common under the RD design. Specifically, we assume that the heterogeneity in the conditional expectations of potential outcomes across different groups vary smoothly along the running variable. Under this assumption, we minimize the worst case utility loss relative to the status quo policy. The resulting new treatment cutoffs have a safety guarantee that they will not yield a worse overall outcome than the existing cutoffs. Finally, we establish the asymptotic regret bounds for the learned policy using semi-parametric efficiency theory. We apply the proposed methodology to empirical and simulated data sets.

Suggested Citation

  • Yi Zhang & Eli Ben-Michael & Kosuke Imai, 2022. "Safe Policy Learning under Regression Discontinuity Designs with Multiple Cutoffs," Papers 2208.13323, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2208.13323
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.13323
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    2. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    3. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    4. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    5. Fabrizia Mealli & Carla Rampichini, 2012. "Evaluating the effects of university grants by using regression discontinuity designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 775-798, July.
    6. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    7. Bertanha, Marinho, 2020. "Regression discontinuity design with many thresholds," Journal of Econometrics, Elsevier, vol. 218(1), pages 216-241.
    8. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    9. David Card & Carlos Dobkin & Nicole Maestas, 2009. "Does Medicare Save Lives?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(2), pages 597-636.
    10. Vishal Gupta & Brian Rongqing Han & Song-Hee Kim & Hyung Paek, 2020. "Maximizing Intervention Effectiveness," Management Science, INFORMS, vol. 66(12), pages 5576-5598, December.
    11. Marinho Bertanha & Guido W. Imbens, 2020. "External Validity in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 593-612, July.
    12. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    13. Kenneth Y. Chay & Patrick J. McEwan & Miguel Urquiola, 2005. "The Central Role of Noise in Evaluating Interventions That Use Test Scores to Rank Schools," American Economic Review, American Economic Association, vol. 95(4), pages 1237-1258, September.
    14. Michal Kolesár & Christoph Rothe, 2018. "Inference in Regression Discontinuity Designs with a Discrete Running Variable," American Economic Review, American Economic Association, vol. 108(8), pages 2277-2304, August.
    15. Xinkun Nie & Emma Brunskill & Stefan Wager, 2021. "Learning When-to-Treat Policies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 392-409, January.
    16. Harrison H. Li & Art B. Owen, 2022. "A general characterization of optimal tie-breaker designs," Papers 2202.12511, arXiv.org, revised Oct 2022.
    17. Yifan Cui & Eric Tchetgen Tchetgen, 2021. "A Semiparametric Instrumental Variable Approach to Optimal Treatment Regimes Under Endogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 162-173, January.
    18. Eggers, Andrew C. & Hainmueller, Jens, 2009. "MPs for Sale? Returns to Office in Postwar British Politics," American Political Science Review, Cambridge University Press, vol. 103(4), pages 513-533, November.
    19. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    20. Joshua D. Angrist & Miikka Rokkanen, 2015. "Wanna Get Away? Regression Discontinuity Estimation of Exam School Effects Away From the Cutoff," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1331-1344, December.
    21. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    22. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    23. David S. Lee & Enrico Moretti & Matthew J. Butler, 2004. "Do Voters Affect or Elect Policies? Evidence from the U. S. House," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 807-859.
    24. Matias D. Cattaneo & Luke Keele & Rocío Titiunik & Gonzalo Vazquez-Bare, 2021. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1941-1952, October.
    25. Yingying Dong & Arthur Lewbel, 2015. "Identifying the Effect of Changing the Policy Threshold in Regression Discontinuity Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1081-1092, December.
    26. Klašnja, Marko & Titiunik, Rocío, 2017. "The Incumbency Curse: Weak Parties, Term Limits, and Unfulfilled Accountability," American Political Science Review, Cambridge University Press, vol. 111(1), pages 129-148, February.
    27. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2019. "nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference," Papers 1906.00198, arXiv.org.
    28. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    29. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    3. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    4. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    6. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    7. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    8. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    9. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    10. Yiwei Sun, 2023. "Extrapolating Away from the Cutoff in Regression Discontinuity Designs," Papers 2311.18136, arXiv.org.
    11. Dean Eckles & Nikolaos Ignatiadis & Stefan Wager & Han Wu, 2020. "Noise-Induced Randomization in Regression Discontinuity Designs," Papers 2004.09458, arXiv.org, revised Nov 2023.
    12. Yuta Okamoto & Yuuki Ozaki, 2024. "On Extrapolation of Treatment Effects in Multiple-Cutoff Regression Discontinuity Designs," Papers 2412.04265, arXiv.org.
    13. Bertanha, Marinho, 2020. "Regression discontinuity design with many thresholds," Journal of Econometrics, Elsevier, vol. 218(1), pages 216-241.
    14. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    15. Matias D. Cattaneo & Luke Keele & Rocío Titiunik & Gonzalo Vazquez-Bare, 2021. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1941-1952, October.
    16. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    17. Myung Hwan Seo & Yoichi Arai & Taisuke Otsu, 2021. "Regression Discontinuity Design with Potentially Many Covariates," Working Paper Series no142, Institute of Economic Research, Seoul National University.
    18. Xiao Huang & Zhaoguo Zhan, 2022. "Local Composite Quantile Regression for Regression Discontinuity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1863-1875, October.
    19. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
    20. Dor Leventer & Daniel Nevo, 2024. "Correcting invalid regression discontinuity designs with multiple time period data," Papers 2408.05847, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.13323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.