IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.25009.html
   My bibliography  Save this paper

Efficient Difference-in-Differences Estimation when Outcomes are Missing at Random

Author

Listed:
  • Lorenzo Testa
  • Edward H. Kennedy
  • Matthew Reimherr

Abstract

The Difference-in-Differences (DiD) method is a fundamental tool for causal inference, yet its application is often complicated by missing data. Although recent work has developed robust DiD estimators for complex settings like staggered treatment adoption, these methods typically assume complete data and fail to address the critical challenge of outcomes that are missing at random (MAR) -- a common problem that invalidates standard estimators. We develop a rigorous framework, rooted in semiparametric theory, for identifying and efficiently estimating the Average Treatment Effect on the Treated (ATT) when either pre- or post-treatment (or both) outcomes are missing at random. We first establish nonparametric identification of the ATT under two minimal sets of sufficient conditions. For each, we derive the semiparametric efficiency bound, which provides a formal benchmark for asymptotic optimality. We then propose novel estimators that are asymptotically efficient, achieving this theoretical bound. A key feature of our estimators is their multiple robustness, which ensures consistency even if some nuisance function models are misspecified. We validate the properties of our estimators and showcase their broad applicability through an extensive simulation study.

Suggested Citation

  • Lorenzo Testa & Edward H. Kennedy & Matthew Reimherr, 2025. "Efficient Difference-in-Differences Estimation when Outcomes are Missing at Random," Papers 2509.25009, arXiv.org.
  • Handle: RePEc:arx:papers:2509.25009
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.25009
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    3. Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
    4. E H Kennedy & S Balakrishnan & L A Wasserman, 2023. "Semiparametric counterfactual density estimation," Biometrika, Biometrika Trust, vol. 110(4), pages 875-896.
    5. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Sooahn Shin, 2024. "Difference-in-differences Design with Outcomes Missing Not at Random," Papers 2411.18772, arXiv.org.
    8. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    9. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    10. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    11. Bellégo, Christophe & Benatia, David & Dortet-Bernadet, Vincent, 2025. "The chained difference-in-differences," Journal of Econometrics, Elsevier, vol. 248(C).
    12. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    13. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    14. Javier Viviens, 2025. "Difference-in-Differences and Changes-in-Changes with Sample Selection," Papers 2502.08614, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Deaner & Chen-Wei Hsiang & Andrei Zeleneev, 2025. "Inferring Treatment Effects in Large Panels by Uncovering Latent Similarities," Papers 2503.20769, arXiv.org, revised Mar 2025.
    2. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Apr 2025.
    3. Dor Leventer, 2025. "Conditional Triple Difference-in-Differences," Papers 2502.16126, arXiv.org, revised Jun 2025.
    4. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    5. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Hans-Bernd Schaefer & Rok Spruk, 2024. "Islamic Law, Western European Law and the Roots of Middle East's Long Divergence: a Comparative Empirical Investigation (800-1600)," Papers 2401.14435, arXiv.org, revised Mar 2024.
    7. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    8. Philipp Bach & Sven Klaassen & Jannis Kueck & Mara Mattes & Martin Spindler, 2025. "Sensitivity Analysis for Treatment Effects in Difference-in-Differences Models using Riesz Representation," Papers 2510.09064, arXiv.org.
    9. Banasaz, Mohammadmahdi & Bose, Niloy & Sedaghatkish, Nazanin, 2025. "Identification of loan effects on personal finance: A case for small U.S. entrepreneurs," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    10. Ulbing, Philipp, 2024. "The Zero Lower Bound on Household Deposit Rates: Not As Binding As We Thought," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302353, Verein für Socialpolitik / German Economic Association.
    11. Kiyoyasu TANAKA, 2025. "Synergy or Anergy? Foreign acquisition and firm productivity in Japan," Discussion papers 25085, Research Institute of Economy, Trade and Industry (RIETI).
    12. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    13. Bach, Philipp & Klaaßen, Sven & Kueck, Jannis & Mattes, Mara & Spindler, Martin, 2025. "Sensitivity analysis for treatment effects in difference-in-differences models using Riesz Rrepresentation," Discussion Papers 2025/7, Free University Berlin, School of Business & Economics.
    14. Alex Hollingsworth & Krzysztof Karbownik & Melissa A. Thomasson & Anthony Wray, 2024. "The Gift of a Lifetime: The Hospital, Modern Medicine, and Mortality," American Economic Review, American Economic Association, vol. 114(7), pages 2201-2238, July.
    15. Nadja van 't Hoff & Giovanni Mellace & Seetha Menon, 2025. "Gender Differences in Healthcare Utilisation -- Evidence from Unexpected Adverse Health Shocks," Papers 2509.01310, arXiv.org.
    16. Cocco, Valentin & Chakir, Raja & Mouysset, Lauriane, 2025. "Guilty or scapegoat? Land consolidation and hedgerow decline," Journal of Environmental Economics and Management, Elsevier, vol. 133(C).
    17. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Li, Daiyue & Jin, Yanhong & Cheng, Mingwang, 2024. "Unleashing the power of industrial robotics on firm productivity: Evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 500-520.
    19. Chen, Jidong & Shi, Xinzheng & Zhang, Ming-ang & Zhang, Sihan, 2024. "Centralization of environmental administration and air pollution: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 126(C).
    20. Philipp Barteska & Jay Euijung Lee, 2024. "Bureaucrats and the Korean export miracle," Discussion Papers 2024-11, Nottingham Interdisciplinary Centre for Economic and Political Research (NICEP).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.25009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.