IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.09064.html
   My bibliography  Save this paper

Sensitivity Analysis for Treatment Effects in Difference-in-Differences Models using Riesz Representation

Author

Listed:
  • Philipp Bach
  • Sven Klaassen
  • Jannis Kueck
  • Mara Mattes
  • Martin Spindler

Abstract

Difference-in-differences (DiD) is one of the most popular approaches for empirical research in economics, political science, and beyond. Identification in these models is based on the conditional parallel trends assumption: In the absence of treatment, the average outcome of the treated and untreated group are assumed to evolve in parallel over time, conditional on pre-treatment covariates. We introduce a novel approach to sensitivity analysis for DiD models that assesses the robustness of DiD estimates to violations of this assumption due to unobservable confounders, allowing researchers to transparently assess and communicate the credibility of their causal estimation results. Our method focuses on estimation by Double Machine Learning and extends previous work on sensitivity analysis based on Riesz Representation in cross-sectional settings. We establish asymptotic bounds for point estimates and confidence intervals in the canonical $2\times2$ setting and group-time causal parameters in settings with staggered treatment adoption. Our approach makes it possible to relate the formulation of parallel trends violation to empirical evidence from (1) pre-testing, (2) covariate benchmarking and (3) standard reporting statistics and visualizations. We provide extensive simulation experiments demonstrating the validity of our sensitivity approach and diagnostics and apply our approach to two empirical applications.

Suggested Citation

  • Philipp Bach & Sven Klaassen & Jannis Kueck & Mara Mattes & Martin Spindler, 2025. "Sensitivity Analysis for Treatment Effects in Difference-in-Differences Models using Riesz Representation," Papers 2510.09064, arXiv.org.
  • Handle: RePEc:arx:papers:2510.09064
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.09064
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    5. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    6. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    7. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2024. "Revisiting Event-Study Designs: Robust and Efficient Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(6), pages 3253-3285.
    8. Ashesh Rambachan & Jonathan Roth, 2023. "A More Credible Approach to Parallel Trends," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2555-2591.
    9. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    10. Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
    11. Andrew Baker & Brantly Callaway & Scott Cunningham & Andrew Goodman-Bacon & Pedro H. C. Sant'Anna, 2025. "Difference-in-Differences Designs: A Practitioner's Guide," Papers 2503.13323, arXiv.org, revised Jun 2025.
    12. Albert Chiu & Xingchen Lan & Ziyi Liu & Yiqing Xu, 2023. "Causal Panel Analysis under Parallel Trends: Lessons from a Large Reanalysis Study," Papers 2309.15983, arXiv.org, revised Jun 2025.
    13. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    14. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    15. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    16. Ariella Kahn-Lang & Kevin Lang, 2020. "The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and Pregnant and Other Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 613-620, July.
    17. Rosenbaum, Paul R. & Silber, Jeffrey H., 2009. "Amplification of Sensitivity Analysis in Matched Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1398-1405.
    18. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    19. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    20. Martin Huber & Jannis Kueck, 2022. "Testing the identification of causal effects in observational data," Papers 2203.15890, arXiv.org, revised Jun 2023.
    21. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Youngmi & Jeong, Deokjae, 2025. "할당관세 정책이 농산물 소매가격에 미치는 인과적 영향 [The Causal Effects of Tariff-Rate Quota Policies on Agricultural Product Retail Prices]," MPRA Paper 126998, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bach, Philipp & Klaaßen, Sven & Kueck, Jannis & Mattes, Mara & Spindler, Martin, 2025. "Sensitivity analysis for treatment effects in difference-in-differences models using Riesz Rrepresentation," Discussion Papers 2025/7, Free University Berlin, School of Business & Economics.
    2. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    4. Ratzanyel Rinc'on & Kyungchul Song, 2025. "Causal Inference with Groupwise Matching," Papers 2510.26106, arXiv.org.
    5. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Apr 2025.
    6. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    7. Ulbing, Philipp, 2024. "The Zero Lower Bound on Household Deposit Rates: Not As Binding As We Thought," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302353, Verein für Socialpolitik / German Economic Association.
    8. Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille, 2021. "Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey," Papers 2112.04565, arXiv.org, revised Jun 2022.
    9. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    10. Ben Deaner & Chen-Wei Hsiang & Andrei Zeleneev, 2025. "Inferring Treatment Effects in Large Panels by Uncovering Latent Similarities," Papers 2503.20769, arXiv.org, revised Mar 2025.
    11. Li, Daiyue & Jin, Yanhong & Cheng, Mingwang, 2024. "Unleashing the power of industrial robotics on firm productivity: Evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 500-520.
    12. Isabelle Chort & Berk Öktem, 2024. "Agricultural shocks, coping policies and deforestation: Evidence from the coffee leaf rust epidemic in Mexico," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 1020-1057, May.
    13. Banasaz, Mohammadmahdi & Bose, Niloy & Sedaghatkish, Nazanin, 2025. "Identification of loan effects on personal finance: A case for small U.S. entrepreneurs," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    14. Kiyoyasu TANAKA, 2025. "Synergy or Anergy? Foreign acquisition and firm productivity in Japan," Discussion papers 25085, Research Institute of Economy, Trade and Industry (RIETI).
    15. Prem, Mounu & Purroy, Miguel E. & Vargas, Juan F., 2025. "Landmines: The local effects of demining," Journal of Public Economics, Elsevier, vol. 247(C).
    16. Jaworski, Krystian & Olipra, Jakub, 2025. "Cutting VAT rate on food products in a high-inflation environment. Does it work out?," Food Policy, Elsevier, vol. 131(C).
    17. Wang, Zhen & Chu, Erming, 2024. "The path toward urban carbon neutrality: How does the low-carbon city pilot policy stimulate low-carbon technology?," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 954-975.
    18. Philipp Barteska & Jay Euijung Lee, 2025. "Personnel is policy (implementation): Bureaucrats and the Korean export miracle," CEP Discussion Papers dp2099, Centre for Economic Performance, LSE.
    19. Coulibaly, Yacouba, 2024. "Resource-backed loans and ecological efficiency of human development: Evidence from African countries," Ecological Economics, Elsevier, vol. 224(C).
    20. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.09064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.