IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/29734.html
   My bibliography  Save this paper

Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey

Author

Listed:
  • Clément de Chaisemartin
  • Xavier D'Haultfoeuille

Abstract

Linear regressions with period and group fixed effects are widely used to estimate policies’ effects: 26 of the 100 most cited papers published by the American Economic Review from 2015 to 2019 estimate such regressions. It has recently been shown that those regressions may produce misleading estimates, if the policy’s effect is heterogeneous between groups or over time, as is often the case. This survey reviews a fast-growing literature that documents this issue, and that proposes alternative estimators robust to heterogeneous effects. We use those alternative estimators to revisit Wolfers (2006a).

Suggested Citation

  • Clément de Chaisemartin & Xavier D'Haultfoeuille, 2022. "Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey," NBER Working Papers 29734, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:29734
    Note: ED EEE EH DEV LS PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w29734.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ruben Enikolopov & Maria Petrova & Ekaterina Zhuravskaya, 2011. "Media and Political Persuasion: Evidence from Russia," American Economic Review, American Economic Association, vol. 101(7), pages 3253-3285, December.
    2. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    3. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    4. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    5. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2011. "The Effect of Newspaper Entry and Exit on Electoral Politics," American Economic Review, American Economic Association, vol. 101(7), pages 2980-3018, December.
    6. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, 2014. "Fuzzy Changes-in Changes," CAGE Online Working Paper Series 184, Competitive Advantage in the Global Economy (CAGE).
    7. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    8. Jonathan Roth & Pedro H. C. Sant’Anna, 2023. "Efficient Estimation for Staggered Rollout Designs," Journal of Political Economy Microeconomics, University of Chicago Press, vol. 1(4), pages 669-709.
    9. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    10. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    11. Kurt Schmidheiny & Sebastian Siegloch, 2023. "On event studies and distributed‐lags in two‐way fixed effects models: Identification, equivalence, and generalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 695-713, August.
    12. Betsey Stevenson & Justin Wolfers, 2006. "Bargaining in the Shadow of the Law: Divorce Laws and Family Distress," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(1), pages 267-288.
    13. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    14. Ariella Kahn-Lang & Kevin Lang, 2020. "The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and Pregnant and Other Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 613-620, July.
    15. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    16. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    17. Brantly Callaway & Andrew Goodman-Bacon & Pedro H. C. Sant'Anna, 2021. "Difference-in-Differences with a Continuous Treatment," Papers 2107.02637, arXiv.org, revised Jan 2024.
    18. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation," Papers 2108.12419, arXiv.org, revised Jan 2024.
    19. Leora Friedberg, 1998. "Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data," NBER Working Papers 6398, National Bureau of Economic Research, Inc.
    20. Pamela Jakiela, 2021. "Simple Diagnostics for Two-Way Fixed Effects," Department of Economics Working Papers 2021-05, Department of Economics, Williams College.
    21. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    22. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    23. Imai, Kosuke & Kim, In Song, 2021. "On the Use of Two-Way Fixed Effects Regression Models for Causal Inference with Panel Data," Political Analysis, Cambridge University Press, vol. 29(3), pages 405-415, July.
    24. Justin Wolfers, 2006. "Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results," American Economic Review, American Economic Association, vol. 96(5), pages 1802-1820, December.
    25. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    26. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    27. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    28. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    29. Christine Blandhol & John Bonney & Magne Mogstad & Alexander Torgovitsky, 2022. "When is TSLS Actually LATE?," NBER Working Papers 29709, National Bureau of Economic Research, Inc.
    30. Michelle Marcus & Pedro H. C. Sant’Anna, 2021. "The Role of Parallel Trends in Event Study Settings: An Application to Environmental Economics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 235-275.
    31. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    4. Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wuthrich, 2022. "Selection and parallel trends," Papers 2203.09001, arXiv.org, revised Mar 2024.
    5. Cl'ement de Chaisemartin & Xavier D'Haultfoeuille & F'elix Pasquier & Doulo Sow & Gonzalo Vazquez-Bare, 2022. "Difference-in-Differences Estimators for Treatments Continuously Distributed at Every Period," Papers 2201.06898, arXiv.org, revised Jul 2024.
    6. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    7. Peter Blair & Elijah Neilson, 2023. "Divorce and Property Division Laws Shape Human Capital Investment," Working Papers 2023-020, Human Capital and Economic Opportunity Working Group.
    8. Yadav, Anil & McHale, John & O'Neill, Stephen, 2023. "How does co-authoring with a star affect scientists' productivity? Evidence from small open economies," Research Policy, Elsevier, vol. 52(1).
    9. Simon Freyaldenhoven & Christian Hansen & Jorge Perez Perez & Jesse Shapiro, 2021. "Visualization, Identification, and stimation in the Linear Panel Event-Study Design," Working Papers 21-44, Federal Reserve Bank of Philadelphia.
    10. Pinotti, Paolo & Bhalotra, Sonia & Britto, Diogo & Sampaio, Breno, 2021. "Job Displacement, Unemployment Benefits and Domestic Violence," CEPR Discussion Papers 16350, C.E.P.R. Discussion Papers.
    11. Damian Clarke & Kathya Tapia-Schythe, 2021. "Implementing the panel event study," Stata Journal, StataCorp LP, vol. 21(4), pages 853-884, December.
    12. Hollenbach, Florian M & Egerod, Benjamin, 2024. "How many is enough? Sample Size in Staggered Difference-in-Differences Designs," OSF Preprints ac5ru, Center for Open Science.
    13. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.
    14. Liyang Sun & Jesse M. Shapiro, 2022. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure," Journal of Economic Perspectives, American Economic Association, vol. 36(4), pages 193-204, Fall.
    15. Giulia Contu & Sara Pau, 2022. "The impact of TV series on tourism performance: the case of Game of Thrones," Empirical Economics, Springer, vol. 63(6), pages 3313-3341, December.
    16. Kurt Schmidheiny & Sebastian Siegloch, 2023. "On event studies and distributed‐lags in two‐way fixed effects models: Identification, equivalence, and generalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 695-713, August.
    17. Ridwan Ah Sheikh & Sunil Kanwar, 2024. "Revisiting the Impact of TRIPS on IPR-intensive Export Flows: Evidence from Staggered Difference-in-Differences," Working papers 351, Centre for Development Economics, Delhi School of Economics.
    18. Cl'ement de Chaisemartin & Diego Ciccia Xavier D'Haultf{oe}uille & Felix Knau, 2024. "Two-way Fixed Effects and Differences-in-Differences Estimators in Heterogeneous Adoption Designs," Papers 2405.04465, arXiv.org, revised Aug 2024.
    19. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
    20. Li, Ping & Zhang, ZhongXiang, 2023. "The effects of new energy vehicle subsidies on air quality: Evidence from China," Energy Economics, Elsevier, vol. 120(C).

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:29734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.