IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/17247.html

Revisiting Event Study Designs: Robust and Efficient Estimation

Author

Listed:
  • Borusyak, Kirill
  • Jaravel, Xavier
  • Spiess, Jann

Abstract

We develop a framework for difference-in-differences designs with staggered treatment adoption and heterogeneous causal effects. We show that conventional regression-based estimators fail to provide unbiased estimates of relevant estimands absent strong restrictions on treatment-effect homogeneity. We then derive the efficient estimator addressing this challenge, which takes an intuitive “imputation†form when treatment-effect heterogeneity is unrestricted. We characterize the asymptotic behavior of the estimator, propose tools for inference, and develop tests for identifying assumptions. Extensions include time-varying controls, triple-differences, and certain non-binary treatments. We show the practical relevance of these insights in a simulation study and an application. Studying the consumption response to tax rebates in the United States, we find that the notional marginal propensity to consume is between 8 and 11 percent in the first quarter — about half as large as benchmark estimates used to calibrate macroeconomic models — and predominantly occurs in the first month after the rebate.

Suggested Citation

  • Borusyak, Kirill & Jaravel, Xavier & Spiess, Jann, 2022. "Revisiting Event Study Designs: Robust and Efficient Estimation," CEPR Discussion Papers 17247, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:17247
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP17247
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:17247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.