IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.02727.html
   My bibliography  Save this paper

Nonparametric Analysis of Finite Mixtures

Author

Listed:
  • Yuichi Kitamura
  • Louise Laage

Abstract

Finite mixture models are useful in applied econometrics. They can be used to model unobserved heterogeneity, which plays major roles in labor economics, industrial organization and other fields. Mixtures are also convenient in dealing with contaminated sampling models and models with multiple equilibria. This paper shows that finite mixture models are nonparametrically identified under weak assumptions that are plausible in economic applications. The key is to utilize the identification power implied by information in covariates variation. First, three identification approaches are presented, under distinct and non-nested sets of sufficient conditions. Observable features of data inform us which of the three approaches is valid. These results apply to general nonparametric switching regressions, as well as to structural econometric models, such as auction models with unobserved heterogeneity. Second, some extensions of the identification results are developed. In particular, a mixture regression where the mixing weights depend on the value of the regressors in a fully unrestricted manner is shown to be nonparametrically identifiable. This means a finite mixture model with function-valued unobserved heterogeneity can be identified in a cross-section setting, without restricting the dependence pattern between the regressor and the unobserved heterogeneity. In this aspect it is akin to fixed effects panel data models which permit unrestricted correlation between unobserved heterogeneity and covariates. Third, the paper shows that fully nonparametric estimation of the entire mixture model is possible, by forming a sample analogue of one of the new identification strategies. The estimator is shown to possess a desirable polynomial rate of convergence as in a standard nonparametric estimation problem, despite nonregular features of the model.

Suggested Citation

  • Yuichi Kitamura & Louise Laage, 2018. "Nonparametric Analysis of Finite Mixtures," Papers 1811.02727, arXiv.org.
  • Handle: RePEc:arx:papers:1811.02727
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.02727
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Jochmans, Koen & Henry, Marc & Salanié, Bernard, 2017. "Inference On Two-Component Mixtures Under Tail Restrictions," Econometric Theory, Cambridge University Press, vol. 33(3), pages 610-635, June.
    4. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    5. Steven Berry & Michael Carnall & Pablo T. Spiller, 1996. "Airline Hubs: Costs, Markups and the Implications of Customer Heterogeneity," NBER Working Papers 5561, National Bureau of Economic Research, Inc.
    6. Philip A. Haile & Han Hong & Matthew Shum, 2003. "Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions," Cowles Foundation Discussion Papers 1445, Cowles Foundation for Research in Economics, Yale University.
    7. Glenn Ellison, 1994. "Theories of Cartel Stability and the Joint Executive Committee," RAND Journal of Economics, The RAND Corporation, vol. 25(1), pages 37-57, Spring.
    8. Victor Aguirregabiria & Pedro Mira, 2013. "Identification of Games of Incomplete Information with Multiple Equilibria and Common Unobserved Heterogeneity," Working Papers tecipa-474, University of Toronto, Department of Economics.
    9. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    10. Philip A Haile & Yuichi Kitamura, 2019. "Unobserved heterogeneity in auctions," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-19.
    11. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    12. Milgrom, Paul R & Weber, Robert J, 1982. "A Theory of Auctions and Competitive Bidding," Econometrica, Econometric Society, vol. 50(5), pages 1089-1122, September.
    13. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    14. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    15. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    16. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    17. Athey, Susan & Haile, Philip A., 2007. "Nonparametric Approaches to Auctions," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 60, Elsevier.
    18. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    19. James J. Heckman & Christopher R. Taber, 1994. "Econometric Mixture Models and More General Models for Unobservables in Duration Analysis," NBER Technical Working Papers 0157, National Bureau of Economic Research, Inc.
    20. Christopher P. Adams, 2016. "Finite mixture models with one exclusion restriction," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 150-165, June.
    21. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    22. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    23. Cristina Butucea & Pierre Vandekerkhove, 2014. "Semiparametric Mixtures of Symmetric Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 227-239, March.
    24. Federico Echenique & Ivana Komunjer, 2009. "Testing Models With Multiple Equilibria by Quantile Methods," Econometrica, Econometric Society, vol. 77(4), pages 1281-1297, July.
    25. Roger W. Klein & Robert P. Sherman, 2002. "Shift Restrictions and Semiparametric Estimation in Ordered Response Models," Econometrica, Econometric Society, vol. 70(2), pages 663-691, March.
    26. Matt Shum & Phil Haile & Han Hong, 2003. "Nonparametric Tests for Common Values in First-Price Auctions," Economics Working Paper Archive 501, The Johns Hopkins University,Department of Economics.
    27. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    28. Matthew Shum, 2000. "Nonparametric Tests for Common Values," Econometric Society World Congress 2000 Contributed Papers 1598, Econometric Society.
    29. Lee, Lung-Fei & Porter, Robert H, 1984. "Switching Regression Models with Imperfect Sample Separation Information-With an Application on Cartel Stability," Econometrica, Econometric Society, vol. 52(2), pages 391-418, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lara Delsalle & Oleksii Birulin, 2024. "Family-oriented versus career seekers: mixture regression separation," Empirical Economics, Springer, vol. 67(1), pages 313-335, July.
    2. Philip A Haile & Yuichi Kitamura, 2019. "Unobserved heterogeneity in auctions," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-19.
    3. Stefan Seifert & Silke Hüttel, 2023. "Is there a risk of a winner’s curse in farmland auctions?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 1140-1177.
    4. Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
    5. Seifert, Stefan & Hüttel, Silke, 2020. "Common values and unobserved heterogeneity in farmland auctions in Germany," FORLand Working Papers 21 (2020), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    6. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    7. Pasha Andreyanov & El Hadi Caoui, 2022. "Secret reserve prices by uninformed sellers," Quantitative Economics, Econometric Society, vol. 13(3), pages 1203-1256, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    2. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    3. Philip A Haile & Yuichi Kitamura, 2019. "Unobserved heterogeneity in auctions," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-19.
    4. Lu, Zeng-Hua, 2009. "Covariate selection in mixture models with the censored response variable," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2710-2723, May.
    5. Navarini, Lorenzo & Verhaest, Dieter, 2024. "Returns to Education and Overeducation Risk: A Dynamic Model," GLO Discussion Paper Series 1456, Global Labor Organization (GLO).
    6. Nathalie Gimenes & Emmanuel Guerre, 2019. "Nonparametric identification of an interdependent value model with buyer covariates from first-price auction bids," Papers 1910.10646, arXiv.org.
    7. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nonparametric Identification And Estimation Of Finite Mixture Models Of Dynamic Discrete Choices," Working Paper 1092, Economics Department, Queen's University.
    8. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.
    9. Hema Yoganarasimhan, 2016. "Estimation of Beauty Contest Auctions," Marketing Science, INFORMS, vol. 35(1), pages 27-54, January.
    10. Gaure, Simen & Roed, Knut & Zhang, Tao, 2007. "Time and causality: A Monte Carlo assessment of the timing-of-events approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1159-1195, December.
    11. Seifert, Stefan & Hüttel, Silke, 2020. "Common values and unobserved heterogeneity in farmland auctions in Germany," FORLand Working Papers 21 (2020), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    12. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Gimenes, Nathalie & Guerre, Emmanuel, 2020. "Nonparametric identification of an interdependent value model with buyer covariates from first-price auction bids," Journal of Econometrics, Elsevier, vol. 219(1), pages 1-18.
    14. Stefan Seifert & Silke Hüttel, 2023. "Is there a risk of a winner’s curse in farmland auctions?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 1140-1177.
    15. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    16. Ali Hortacsu & Jakub Kastl, "undated". "Testing for Common Values in Canadian Treasury Bill Auctions," Discussion Papers 07-053, Stanford Institute for Economic Policy Research.
    17. Hansen, Jörgen & Kristensen, Nicolai & Andersen, Henrik Lindegaard, 2020. "The Bottom 20%: Early Career Paths of Adolescents with Low GPA," IZA Discussion Papers 13564, Institute of Labor Economics (IZA).
    18. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    19. Lamy, Laurent, 2012. "The econometrics of auctions with asymmetric anonymous bidders," Journal of Econometrics, Elsevier, vol. 167(1), pages 113-132.
    20. Avner Ahituv & Marta Tienda, 2004. "Employment, Motherhood, and School Continuation Decisions of Young White, Black, and Hispanic Women," Journal of Labor Economics, University of Chicago Press, vol. 22(1), pages 115-158, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.02727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.